【題目】如圖,,點(diǎn)是線(xiàn)段上的一點(diǎn),.動(dòng)點(diǎn)從點(diǎn)出發(fā),以 的速度向右運(yùn)動(dòng),到達(dá)點(diǎn)后立即返回,以 的速度向左運(yùn)動(dòng);動(dòng)點(diǎn)從點(diǎn)出發(fā),以 的速度向右運(yùn)動(dòng). 設(shè)它們同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為. 當(dāng)點(diǎn)與點(diǎn)第二次重合時(shí),兩點(diǎn)停止運(yùn)動(dòng).
(1)求,;
(2)當(dāng)為何值時(shí),;
(3)當(dāng)為何值時(shí),與第一次相遇;
(4)當(dāng)為何值時(shí),.
【答案】(1)AC=4cm, BC=8cm;(2)當(dāng)時(shí),;(3)當(dāng)時(shí),與第一次相遇;(4)
【解析】
(1)由于AB=12cm,點(diǎn)C是線(xiàn)段AB上的一點(diǎn),BC=2AC,則AC+BC=3AC=AB=12cm,依此即可求解;
(2)分別表示出AP、PQ,然后根據(jù)等量關(guān)系AP=PQ列出方程求解即可;
(3)當(dāng)與第一次相遇時(shí)由得到關(guān)于t的方程,求解即可;
(4)分相遇前、相遇后以及到達(dá)B點(diǎn)返回后相距1cm四種情況列出方程求解即可.
(1)AC=4cm, BC=8cm.
(2) 當(dāng)時(shí),,
即,解得.
所以當(dāng)時(shí),.
(3) 當(dāng)與第一次相遇時(shí),,即,解得.
所以當(dāng)時(shí),與第一次相遇.
(4)
,
,
,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,,,,AD、BE相交于點(diǎn)M,連接CM.
求證:;
求的度數(shù)用含的式子表示;
如圖2,當(dāng)時(shí),點(diǎn)P、Q分別為AD、BE的中點(diǎn),分別連接CP、CQ、PQ,判斷的形狀,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知BD∥AC,CE∥BA,且點(diǎn)D,A,E在一條直線(xiàn)上,設(shè)∠BAC=x,∠D+∠E=y(tǒng).
(1)試用含x的代數(shù)式表示y;
(2)當(dāng)x=90°時(shí),判斷直線(xiàn)DB與直線(xiàn)EC的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為響應(yīng)國(guó)家要求中小學(xué)生每天鍛煉1小時(shí)的號(hào)召,某校開(kāi)展了形式多樣的“陽(yáng)光體育運(yùn)動(dòng)”活動(dòng),小明對(duì)某班同學(xué)參加鍛煉的情況進(jìn)行了統(tǒng)計(jì),并繪制了圖1和圖2的統(tǒng)計(jì)圖.請(qǐng)回答下列問(wèn)題:
(1)該班共有多少名學(xué)生?
(2)求圖1中“乒乓球”部分的人數(shù),并在圖1中將“乒乓球”部分的圖形補(bǔ)充完整;
(3)求出扇形統(tǒng)計(jì)圖中表示“足球”的扇形的圓心角度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】|a|+|b|=|a+b|,則a,b關(guān)系是( 。
A. a,b的絕對(duì)值相等
B. a,b異號(hào)
C. a+b的和是非負(fù)數(shù)
D. a、b同號(hào)或a、b其中一個(gè)為0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)生在素質(zhì)教育基地進(jìn)行社會(huì)實(shí)踐活動(dòng),幫助農(nóng)民伯伯采摘了黃瓜和茄子共40kg,了解到這些蔬菜的種植成本共42元,還了解到如下信息:
(1)請(qǐng)問(wèn)采摘的黃瓜和茄子各多少千克?
(2)這些采摘的黃瓜和茄子可賺多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD是正方形,△ADF旋轉(zhuǎn)一定角度后得到△ABE,如圖所示,如果AF=4,AB=7,
(1)指出旋轉(zhuǎn)中心和旋轉(zhuǎn)角度;
(2)求DE的長(zhǎng)度;
(3)BE與DF的位置關(guān)系如何?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com