【題目】四邊形ABCD內(nèi)接于⊙O,點(diǎn)E為AD上一點(diǎn),連接AC,CB,∠B=∠AEC.
(1)如圖1,求證:CE=CD;
(2)如圖2,若∠B+∠CAE=120°,∠ACD=2∠BAC,求∠BAD的度數(shù);
(3)如圖3,在(2)的條件下,延長CE交⊙O于點(diǎn)G,若tan∠BAC= ,EG=2,求AE的長.
【答案】
(1)解:證明:∵四邊形ABCD內(nèi)接于⊙O
∴∠B+∠D=180°,
∵∠B=∠AEC,
∴∠AEC+∠D=180°,
∵∠AEC+∠CED=180°,
∴∠D=∠CED,
∴CE=CD.
(2)解:作CH⊥DE于H.
設(shè)∠ECH=α,由(1)CE=CD,
∴∠ECD=2α,
∵∠B=∠AEC,∠B+∠CAE=120°,
∴∠CAE+∠AEC=120°
∴∠ACE=180°﹣∠AEC﹣∠ACE=60°,
∴∠CAE=90°﹣∠ACH=90°﹣(60°+α)=30°﹣α,
∠ACD=∠ACH+∠HCD=60°+2α,
∵∠ACD=2∠BAC,
∴∠BAC=30°+α,
∴∠BAD=∠BAC+∠CAE=30°+α+30°﹣α=60°.
(3)解:連接AG,作GN⊥AC,AM⊥EG
∵∠CED=∠AEG,∠CDE=∠AGE,∠CED=∠CDE,
∴∠AEG=∠AGE,
∴AE=AG,
∴EM=MG= EG=1,
∴∠EAG=∠ECD=2α,
∴∠CAG=∠CAD+∠DAG=30°﹣α+2α=∠BAC,
∵tan∠BAC= ,
∴設(shè)NG=5 m,可得AN=11m,AG= =14m,
∵∠ACG=60°,
∴CN=5m,AM=8 m,MG= =2m=1,
∴m= ,
∴CE=CD=CG﹣EG=10m﹣2=3
∴AE= = =7.
【解析】(1)根據(jù)圓內(nèi)接四邊形對(duì)角互補(bǔ)及平角的定義,得出∠B與∠D互補(bǔ),∠AEC與∠CED互補(bǔ),再根據(jù)等角的補(bǔ)角相等,得出∠D=∠CED,即可得出結(jié)論。
(2)作CH⊥DE于H.設(shè)∠ECH=α,先用含α的代數(shù)式分別表示出∠CAE和∠BAC,即可求得∠BAD的度數(shù)。
(3)連接AG,作GN⊥AC,AM⊥EG,先證明∠CAG=∠BAC,根據(jù)tan∠BAC的值,用含m的代數(shù)式分別表示出NG、AN、AG的長,再由∠ACG=60°,求出m的值,再根據(jù)勾股定理即可求得AE的長。
【考點(diǎn)精析】利用勾股定理的概念和圓內(nèi)接四邊形的性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;把圓分成n(n≥3):1、依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形2、經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知,,則的值為_____________;
(2)已知中,不含項(xiàng)和項(xiàng),則=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=x2﹣2mx﹣3m2(m>0)與x軸交于A、B兩點(diǎn),A點(diǎn)在B點(diǎn)左邊,與y軸交于C點(diǎn),頂點(diǎn)為M.
(1)當(dāng)m=1時(shí),求點(diǎn)A、B、M坐標(biāo);
(2)如圖(1)的條件下,若P為拋物線上一個(gè)動(dòng)點(diǎn),以AP為斜邊的等腰直角的直角頂點(diǎn)Q在對(duì)稱軸上,(A、P、Q按順時(shí)針方向排列),求P點(diǎn)坐標(biāo).
(3)如圖2,若一次函數(shù)y=kx+b過B點(diǎn)且與拋物線只有一個(gè)公共點(diǎn),平移直線y=kx+b,使其過拋物線的頂點(diǎn)M,與拋物線另一個(gè)交點(diǎn)為D,與x軸交于F點(diǎn),當(dāng)m變化時(shí),求證:DF:MF是定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,P為AD邊上一點(diǎn),沿直線BP將△ABP翻折至△EBP(點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)E),PE與CD相交于點(diǎn)O,且OE=OD.
(1)求證:PE=DH;
(2)若AB=10,BC=8,求DP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公交公司有A,B型兩種客車,它們的載客量和租金如下表:
A | B | |
載客量(人/輛) | 45 | 30 |
租金(元/輛) | 400 | 280 |
紅星中學(xué)根據(jù)實(shí)際情況,計(jì)劃租用A,B型客車共5輛,同時(shí)送七年級(jí)師生到基地參加社會(huì)實(shí)踐活動(dòng),設(shè)租用A型客車x輛,根據(jù)要求回答下列問題:
(1)用含x的式子填寫下表:
車輛數(shù)(輛) | 載客量(人) | 租金(元) | |
A | x | 45x | 400x |
B | 5-x |
(2)若要保證租車費(fèi)用不超過1900元,求x的最大值;
(3)在(2)的條件下,若七年級(jí)師生共有195人,寫出所有可能的租車方案,并確定最省錢的租車方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小磊老師從甲地去往10千米的乙地,開始以一定的速度行駛,之后由于道路維修,速度變?yōu)樵瓉淼乃姆种唬^了維修道路后又變?yōu)樵瓉淼乃俣鹊竭_(dá)乙地.設(shè)小磊老師行駛的時(shí)間為x(分鐘),行駛的路程為y(千米),圖中的折線表示y與x之間的函數(shù)關(guān)系,則小磊老師從甲地到達(dá)乙地所用的時(shí)間是( )
A.15分鐘
B.20分鐘
C.25分鐘
D.30分鐘
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三角形A′B′C′是三角形ABC經(jīng)過某種變換后得到的圖形.
(1)分別寫出點(diǎn)A和點(diǎn)A′,點(diǎn)B和點(diǎn)B′,點(diǎn)C和點(diǎn)C′的坐標(biāo);
(2)觀察點(diǎn)A和點(diǎn)A′,點(diǎn)B和點(diǎn)B′,點(diǎn)C和點(diǎn)C′的坐標(biāo),用文字語言描述它們的坐標(biāo)之間的關(guān)系 ;
(3)三角形ABC內(nèi)任意一點(diǎn)M的坐標(biāo)為(x,y),點(diǎn)M經(jīng)過這種變換后得到點(diǎn)M′,則點(diǎn)M′的坐標(biāo)為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com