【題目】在滑草過(guò)程中,小明發(fā)現(xiàn)滑道兩邊形如兩條雙曲線,如圖,點(diǎn)A1,A2A3在反比例函數(shù)yx0)的圖象上,點(diǎn)B1,B2B3反比例函數(shù)yk1,x0)的圖象上,A1B1A2B2y軸,已知點(diǎn)A1,A2的橫坐標(biāo)分別為1,2,,令四邊形A1B1B2A2、A2B2B3A3、的面積分別為S1、S2、

1)用含k的代數(shù)式表示S1_____

2)若S1939,則k_____

【答案】 761

【解析】

1)根據(jù)反比例函數(shù)圖象上點(diǎn)的特征和平行于y軸的直線的性質(zhì)計(jì)算A1B1、A2B2、…,最后根據(jù)梯形面積公式可得S1的面積;

2)分別計(jì)算S2S3、…Sn的值并找規(guī)律,根據(jù)已知S19=39列方程可得k的值.

解:(1)∵A1B1A2B2y軸,

A1B1的橫坐標(biāo)相等,A2B2的橫坐標(biāo)相等,,AnBn的橫坐標(biāo)相等,

∵點(diǎn)A1A2的橫坐標(biāo)分別為1,2,,

∴點(diǎn)B1,B2的橫坐標(biāo)分別為1,2,,

∵點(diǎn)A1,A2,A3在反比例函數(shù)yx0)的圖象上,點(diǎn)B1,B2B3反比例函數(shù)yk1,x0)的圖象上,

A1B1k1,A2B2,

S1×1×+k1)=k)=

故答案為:;

2)由(1)同理得:A3B3A4B4,,

S2 [+k1]k1),

S3 []

Sn,

S1939,

×k1)=39

解得:k761,

故答案為:761

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,對(duì)稱軸為直線的拋物線經(jīng)過(guò)兩點(diǎn),與軸的另一個(gè)交點(diǎn)為,點(diǎn)軸上,且

1)求該拋物線的表達(dá)式;

2)設(shè)該拋物線上的一個(gè)動(dòng)點(diǎn)的橫坐標(biāo)為

①當(dāng)時(shí),求四邊形的面積的函數(shù)關(guān)系式,并求出的最大值;

②點(diǎn)在直線上,若以為邊,點(diǎn)、、、為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)求出所有符合條件的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰△ABC的底邊BC=20,面積為120,點(diǎn)F在邊BC上,且BF=3FC,EG是腰AC的垂直平分線,若點(diǎn)DEG上運(yùn)動(dòng),則△CDF周長(zhǎng)的最小值為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),點(diǎn),點(diǎn).

1)畫出關(guān)于軸的對(duì)稱圖形,并寫出點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo);

2)若點(diǎn)軸上,連接、,則的最小值是 ;

3)若直線軸,與線段分別交于點(diǎn)、(點(diǎn)不與點(diǎn)重合),若將沿直線翻折,點(diǎn)的對(duì)稱點(diǎn)為點(diǎn),當(dāng)點(diǎn)落在的內(nèi)部(包含邊界)時(shí),點(diǎn)的橫坐標(biāo)的取值范圍是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是半圓圓O的直徑,C是弧AB的中點(diǎn),M是弦AC的中點(diǎn),CHBM,垂足為H.求證

1)∠AHO=90°

2)求證:CH=AHOH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校組織數(shù)學(xué)興趣探究活動(dòng),愛思考的小實(shí)同學(xué)在探究?jī)蓷l直線的位置關(guān)系查閱資料時(shí)發(fā)現(xiàn),兩條中線互相垂直的三角形稱為“中垂三角形”.如圖1、圖2、圖3中,AF、BEABC的中線,AFBE于點(diǎn)P,像ABC這樣的三角形均稱為“中垂三角形”.

1)如圖1,當(dāng)∠PAB45°AB6時(shí),AC   ,BC   ;如圖2,當(dāng)sinPAB,AB4時(shí),AC   BC   ;

2)請(qǐng)你觀察(1)中的計(jì)算結(jié)果,猜想AB2、BC2、AC2三者之間的關(guān)系,用等式表示出來(lái),并利用圖3證明你的結(jié)論.

3)如圖4,在ABC中,AB4,BC2,D、E、F分別是邊AB、AC、BC的中點(diǎn),連結(jié)DE并延長(zhǎng)至G,使得GEDE,連結(jié)BG,當(dāng)BGAC于點(diǎn)M時(shí),求GF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)Ax1,y1)、Bx2,y2)在二次函數(shù)yx2mxn的圖像上,當(dāng)x11、x23時(shí),y1y2

1)若Pa,b1),Q3b2)是函數(shù)圖象上的兩點(diǎn),b1b2,則實(shí)數(shù)a的取值范圍是(

Aa1 Ba3 Ca1a3 D1a3

2)若拋物線與x軸只有一個(gè)公共點(diǎn),求二次函數(shù)的表達(dá)式.

3)若對(duì)于任意實(shí)數(shù)x1、x2都有y1y2≥2,則n的范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P2,﹣3)在拋物線Lyax22ax+a+kak均為常數(shù)且a0)上,Ly軸于點(diǎn)C,連接CP

1)用a表示k,并求L的對(duì)稱軸;

2)當(dāng)L經(jīng)過(guò)點(diǎn)(4,﹣7)時(shí),求此時(shí)L的表達(dá)式及其頂點(diǎn)坐標(biāo);

3)橫,縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).如圖,當(dāng)a0時(shí),若L在點(diǎn)C,P之間的部分與線段CP所圍成的區(qū)域內(nèi)(不含邊界)恰有5個(gè)整點(diǎn),求a的取值范圍;

4)點(diǎn)Mx1,y1),Nx2,y2)是L上的兩點(diǎn),若tx1t+1,當(dāng)x23時(shí),均有y1y2,直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線軸交于點(diǎn),與軸交于點(diǎn),拋物線經(jīng)過(guò)兩點(diǎn),與軸的另一個(gè)交點(diǎn)為,點(diǎn)是第一象限拋物線上的點(diǎn),連結(jié)交直線于點(diǎn),設(shè)點(diǎn)的橫坐為的比值為

1__________;

2)當(dāng)取最大值時(shí),__________

查看答案和解析>>

同步練習(xí)冊(cè)答案