【題目】如圖,坡AB的坡比為1:2.4,坡長AB=130米,坡AB的高為BT.在坡AB的正面有一棟建筑物CH,點(diǎn)H、A、T在同一條地平線MN上.
(1)試問坡AB的高BT為多少米?
(2)若某人在坡AB的坡腳A處和中點(diǎn)D處,觀測到建筑物頂部C處的仰角分別為60°和30°,試求建筑物的高度CH.(精確到米, ≈1.73, ≈1.41)
【答案】(1)坡AB的高BT為50米;(2)建筑物高度為89米
【解析】試題分析:(1)根據(jù)坡AB的坡比為1:2.4,可得tan∠BAT=,可設(shè)TB=h,則AT=2.4h,由勾股定理可得,即可求解,(2) 作DK⊥MN于K,作DL⊥CH于L, 在△ADK中,AD=AB=65,KD=BT=25,得AK=60,在△DCL中,∠CDL=30°,令CL=x,得LD= , 易知四邊形DLHK是矩形,則LH=DK,LD=HK,在△ACH中,∠CAH=60°,CH=x+25,得AH=, 所以,解得,則CH=.
試題解析:(1)在△ABT中,∠ATB=90°,BT:AT=1:2.4,AB=130,
令TB=h,則AT=2.4h,
有,
解得h=50(舍負(fù)).
答:坡AB的高BT為50米.
(2)作DK⊥MN于K,作DL⊥CH于L,
在△ADK中,AD=AB=65,KD=BT=25,得AK=60,
在△DCL中,∠CDL=30°,令CL=x,得LD= ,
易知四邊形DLHK是矩形,則LH=DK,LD=HK,
在△ACH中,∠CAH=60°,CH=x+25,得AH=,
所以,解得,
則CH=.
答:建筑物高度為89米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC和△ADE是有公共頂點(diǎn)的等腰直角三角形,∠BAC=∠DAE=90°,EC的延長線交BD于點(diǎn)P.
(1)把△ABC繞點(diǎn)A旋轉(zhuǎn)到圖1,BD,CE的關(guān)系是 (選填“相等”或“不相等”);簡要說明理由;
(2)若AB=3,AD=5,把△ABC繞點(diǎn)A旋轉(zhuǎn),當(dāng)∠EAC=90°時(shí),在圖2中作出旋轉(zhuǎn)后的圖形,PD= ,簡要說明計(jì)算過程;
(3)在(2)的條件下寫出旋轉(zhuǎn)過程中線段PD的最小值為 ,最大值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC的頂點(diǎn)O是坐標(biāo)原點(diǎn),點(diǎn)A在第一象限,點(diǎn)C在第四象限,點(diǎn)B在x軸的正半軸上.∠OAB=90°且OA=AB,OB,OC的長分別是二元一次方程組的解(OB>OC).
(1)求點(diǎn)A和點(diǎn)B的坐標(biāo);
(2)點(diǎn)P是線段OB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)O,B重合),過點(diǎn)P的直線l與y軸平行,直線l交邊OA或邊AB于點(diǎn)Q,交邊OC或邊BC于點(diǎn)R.設(shè)點(diǎn)P的橫坐標(biāo)為t,線段QR的長度為m.已知t=4時(shí),直線l恰好過點(diǎn)C.
①當(dāng)0<t<3時(shí),求m關(guān)于t的函數(shù)關(guān)系式;
②當(dāng)m=時(shí),求點(diǎn)P的橫坐標(biāo)t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:如圖①,在平面直角坐標(biāo)系中,A,B兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),AB的中點(diǎn)P的坐標(biāo)為(xp,yp).由xp-x1=x2-xp,得xp=,同理得yp=,所以AB的中點(diǎn)坐標(biāo)為P(,).由勾股定理得AB2=|x2-x1|2+|y2-y1|2,所以A,B兩點(diǎn)間的距離公式為AB=.
注:上述公式對A,B在平面直角坐標(biāo)系中其他位置也成立.
解答下列問題:
如圖②,拋物線y=ax2+bx-3(a≠0)與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,且BO=OC=3AO,連接BC.
(1)求拋物線的表達(dá)式;
(2)在拋物線的對稱軸上是否存在點(diǎn)P,使△PBC是等腰三角形?若存在,試求出符合條件的P點(diǎn)坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題8分)如圖,已知拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B(3,0),與y軸交于點(diǎn)C,連接BC交拋物線的對稱軸于點(diǎn)E,D是拋物線的頂點(diǎn).
(1)求此拋物線的解析式;
(2)直接寫出點(diǎn)C和點(diǎn)D的坐標(biāo);
(3)若點(diǎn)P在第一象限內(nèi)的拋物線上,且S△ABP=4S△COE,求P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場第1次用39萬元購進(jìn)A、B兩種商品,銷售完后獲得利潤6萬元,它們的進(jìn)價(jià)和售價(jià)如下表:(總利潤=單件利潤×銷售量)
(1)該商場第1次購進(jìn)A、B兩種商品各多少件?
(2)商場第2次以原價(jià)購進(jìn)A、B兩種商品,購進(jìn)A商品的件數(shù)不變,而購進(jìn)B商品的件數(shù)是第1次的2倍,A商品按原價(jià)銷售,而B商品打折銷售,若兩種商品銷售完畢,要使得第2次經(jīng)營活動(dòng)獲得利潤等于54000元,則B種商品是打幾折銷售的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知線段AB和CD的公共部分BD=AB= CD,線段AB、CD的中點(diǎn)E,F之間距離是10cm,求AB,CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中小學(xué)時(shí)期是學(xué)生身心變化最為明顯的時(shí)期,這個(gè)時(shí)期孩子們的身高變化呈現(xiàn)一定的趨勢,7~15歲期間生子們會(huì)經(jīng)歷一個(gè)身高發(fā)育較迅速的階段,我們把這個(gè)年齡階段叫做生長速度峰值段,小明通過上網(wǎng)查閱《2016年某市兒童體格發(fā)育調(diào)查表》,了解某市男女生7~15歲身高平均值記錄情況,并繪制了如下統(tǒng)計(jì)圖,并得出以下結(jié)論:
①10歲之前,同齡的女生的平均身高一般會(huì)略高于男生的平均身高;
②10~12歲之間,女生達(dá)到生長速度峰值段,身高可能超過同齡男生;
③7~15歲期間,男生的平均身高始終高于女生的平均身高;
④13~15歲男生身高出現(xiàn)生長速度峰值段,男女生身高差距可能逐漸加大.
以上結(jié)論正確的是( )
A. ①③ B. ②③ C. ②④ D. ③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,CD⊥BC于點(diǎn)C,交∠ABC的平分線于點(diǎn)D,AE平分∠BAC交BD于點(diǎn)E,過點(diǎn)E作EF∥BC交AC于點(diǎn)F,連接DF.
(1)補(bǔ)全圖1;
(2)如圖1,當(dāng)∠BAC=90°時(shí),
①求證:BE=DE;
②寫出判斷DF與AB的位置關(guān)系的思路(不用寫出證明過程);
(3)如圖2,當(dāng)∠BAC=α時(shí),直接寫出α,DF,AE的關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com