【題目】一般地,二元一次方程的解可以轉(zhuǎn)化為點(diǎn)的坐標(biāo),其中x的值對(duì)應(yīng)為點(diǎn)的橫坐標(biāo),y的值對(duì)應(yīng)為點(diǎn)的縱坐標(biāo),如二元一次方程x2y=0的解 可以轉(zhuǎn)化為點(diǎn)的坐標(biāo)A(0,0)B(2,1).以方程x2y=0的解為坐標(biāo)的點(diǎn)的全體叫做方程x2y=0的圖象。

(1)寫出二元一次方程x2y=0的任意一組解___,并把它轉(zhuǎn)化為點(diǎn)C的坐標(biāo)___;

(2)在平面直角坐標(biāo)系中,任何一個(gè)二元一次方程的圖象都是一條直線,如方程x2y=0的圖象是由該方程所有的解轉(zhuǎn)化成的點(diǎn)組成,在圖中描出點(diǎn)A. 點(diǎn)B和點(diǎn)C,觀察它們是否在同一直線上;

(3)取滿足二元一次方程x+y=3的兩個(gè)解,并把它們轉(zhuǎn)化成點(diǎn)的坐標(biāo),畫出二元一次方程x+y=3的圖象;

(4)根據(jù)圖象,寫出二元一次方程x2y=0的圖象和二元一次方程x+y=3的圖象的交點(diǎn)坐標(biāo)___,由此可得二元一次方程組 的解是___.

【答案】1(2,1);(2)見解析;(3)見解析;(4 (2,1),

【解析】

1)計(jì)算出x=-2所對(duì)應(yīng)的y的值即可得到方程的一組解,然后把它轉(zhuǎn)化為點(diǎn)C的坐標(biāo);

2)利用描點(diǎn)法畫直線AB,然后利用畫的直線可判斷點(diǎn)C在直線AB上;

3)取兩組對(duì)應(yīng)值,然后利用描點(diǎn)法畫直線x+y=3即可;

4)利用畫出的圖象寫出交點(diǎn)坐標(biāo),然后利用方程組的解就是兩個(gè)相應(yīng)的函數(shù)圖象的交點(diǎn)坐標(biāo)求解.

(1)二元一次方程x2y=0的解可為 ,把它轉(zhuǎn)化為點(diǎn)C的坐標(biāo)為(2,1);

(2)如圖,點(diǎn)A. 點(diǎn)B和點(diǎn)C同一直線上;

(3)二元一次方程x+y=3的兩個(gè)解為 ,把它們轉(zhuǎn)化成點(diǎn)的坐標(biāo)為(3,0),(0,3),如圖;

(4)根據(jù)圖象,二元一次方程x2y=0的圖象和二元一次方程x+y=3的圖象的交點(diǎn)坐標(biāo)為(2,1),由此可得二元一次方程組 的解是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ACB90°,∠ABC25°,以點(diǎn)C為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn)后得到△ABC,且點(diǎn)A在邊AB′上,則旋轉(zhuǎn)角的度數(shù)為( 。

A. 65°B. 60°C. 50°D. 40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售一種產(chǎn)品每件產(chǎn)品的成本為2400,銷售單價(jià)定位3000,該商場為了促銷規(guī)定客戶一次購買這種新型產(chǎn)品不超過10件時(shí),每件按3000元銷售;若一次購買該種產(chǎn)品超過10件時(shí),每多購買一件,所購買的全部產(chǎn)品的銷售單價(jià)均降低10,但銷售單價(jià)均不低于2600;

1)設(shè)一次購買這種產(chǎn)品xx≥10)件商場所獲的利潤為y,y(元)與x(件)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍

2)在客戶購買產(chǎn)品的件數(shù)盡可能少的前提下,商場所獲的利潤為12000,此時(shí)該商場銷售了多少件產(chǎn)品?

3)填空該商場的銷售人員發(fā)現(xiàn),當(dāng)客戶一次購買產(chǎn)品的件數(shù)在某一個(gè)區(qū)間時(shí),會(huì)出現(xiàn)隨著一次購買的數(shù)量的增多,商場所獲的利潤反而減少這一情況,客戶一次購買產(chǎn)品的數(shù)量x滿足的條件是   (其它銷售條件不變)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列各式:①;②;③

1)根據(jù)你觀察、歸納、發(fā)現(xiàn)的規(guī)律,寫出可以是______的平方.

2)試猜想寫出第個(gè)等式,并說明成立的理由.

3)利用前面的規(guī)律,將改成完全平方的形式為:______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,BD2AD,E、F、G分別是OCOD、AB的中點(diǎn),下列結(jié)論:①∠OBEADO;②EGEF;③GF平分∠AGE;④EFGE,其中正確的是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A1,1),B3,2),將點(diǎn)A向左平移兩個(gè)單位,再向上平移4個(gè)單位得到點(diǎn)C

1)寫出點(diǎn)C坐標(biāo);

(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點(diǎn)D在邊AB上(不與A,B重合),DEBC交AC于點(diǎn)E,將ADE沿直線DE翻折,得到A′DE,直線DA′,EA′分別交直線BC于點(diǎn)M,N.

(1)求證:DB=DM.

(2)若=2,DE=6,求線段MN的長.

(3)若=nn≠1),DE=a,則線段MN的長為   (用含n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠1與∠2互補(bǔ),

那么

證明如下:

(已知)

______________________________________________________

__________________________________

(已知)

(等量代換)

∴____________∥_____________________________________________

__________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD中,ADBC,要判別四邊形ABCD是平行四邊形,還需滿足條件(

A. A+C=180°B. B+D=180°

C. A+B=180°D. A+D=180°

查看答案和解析>>

同步練習(xí)冊(cè)答案