【題目】下列命題:①如果34、5為一組勾股數(shù),那么3k、4k5k仍是勾股數(shù);②含有45°角的直角三角形的三邊長之比是11:;③如果一個三角形的三邊是9,12,13,那么此三角形是直角三角形;④一個直角三角形的兩邊長是34,它的斜邊是5.其中正確的個數(shù)是 ( )

A.1B.2C.3D.4

【答案】A

【解析】

一般地,如果a,b,c是一組勾股數(shù),那么ak,bk,ck(k是正整數(shù))也方式一組勾股數(shù);根據(jù)勾股定理和逆定理進(jìn)行分析.

①如果3、45為一組勾股數(shù),那么3k、4k、5k仍是勾股數(shù);應(yīng)(k是正整數(shù)),錯誤;

②含有45°角的直角三角形的三邊長之比是11:;正確;

③如果一個三角形的三邊是9,12,13,那么此三角形是直角三角形;92+122≠132;錯誤;

④一個直角三角形的兩邊長是34,它的斜邊不一定是5;故錯誤.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,ABC在平面直角坐標(biāo)系XOY中,其中A12),B31),C4,3),試解答下列各題:

1)作出ABC關(guān)于x軸對稱的A1B1C1,并寫出A1B1C1三個頂點(diǎn)的坐標(biāo);A1________);B1________);C1________).

2)作出ABC關(guān)于直線a對稱的A2B2C2,并寫出A2B2C2三個頂點(diǎn)的坐標(biāo);A2________);B2________);C2________).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】□ABCD中,過點(diǎn)DDEAB于點(diǎn)E,點(diǎn)F在邊CD上,DFBE,連接AF,BF

(1)求證:四邊形DEBF是矩形;

(2)若AF平分∠DABAE=3,BF=4,求□ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某輪船由西向東航行,在A處測得小島P的方位是北偏東75°,又繼續(xù)航行7海里后,在B處測得小島P的方位是北偏東60°,求:

1)此時輪船與小島P的距離BP是多少海里;

2)小島點(diǎn)P方圓3海里內(nèi)有暗礁,如果輪船繼續(xù)向東行使,請問輪船有沒有觸焦的危險?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在學(xué)校開展的數(shù)學(xué)活動課上,小明和小剛制作了一個正三樓錐(質(zhì)量均勻,四個面完全相同),并在各個面上分別標(biāo)記數(shù)字1,2,3,4,游戲規(guī)則如下每人投擲三棱錐兩次,并記錄底面的數(shù)字,如果兩次所擲數(shù)字的和為單數(shù),那么算小明贏,如果兩歡所擲數(shù)字的和為偶數(shù),那么算小明贏;

(1)請用列表或者面樹狀圍的方法表示上述游戲中的所有可能結(jié)果.

(2)請分別隸出小明和小剛能贏的概率,并判新游戲的公平性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在平面直角坐標(biāo)系中,ABC的頂點(diǎn)A、C分別在y軸、x軸上,且∠ACB=90°,AC=BC

1)如圖1,當(dāng)A0,-2),C10),點(diǎn)B在第四象限時,求點(diǎn)B的坐標(biāo);
2)如圖2,當(dāng)點(diǎn)Cx軸正半軸上運(yùn)動,點(diǎn)Ay軸正半軸上運(yùn)動,點(diǎn)B在第四象限時,作BDy軸于點(diǎn)D,試判斷是一個定值,并說明定值是多少?請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們新定義一種三角形:兩邊平方和等于第三邊平方的4倍的三角形叫做常態(tài)三角形例如:某三角形三邊長分別是568,因?yàn)?/span>,所以這個三角形是常態(tài)三角形.

(1)若△ABC三邊長分別是2,4,則此三角形 常態(tài)三角形(不是”);

(2)如圖,RtABC中,∠ACB=90°,BC=6,點(diǎn)DAB的中點(diǎn),連接CD,CD=AB, 若△ACD是常態(tài)三角形,求△ABC的面積;,

(3)RtABC是常態(tài)△,斜邊是,則此三角形的兩直角邊的和= .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,第一次將△OAB變換成△OA1B1,第二次將△OA1B1變換成△OA2B2,第三次將△OA2B2變換成△OA3B3,已知A(1,5) A1(2,5) 、A2(4,5) 、A3(8,5) B(2,0) 、B1(4,0) 、B2(8,0) 、B3(16,0):若按此規(guī)律,將△OAB進(jìn)行n次變換,得到△OAnBn。推測An的坐標(biāo)是___________,Bn的坐標(biāo)是___________。( )

A. (2n,5)(2n+1,0) B. (2n-1,5)(2n+1,0) C. (2n,5)(2n,0) D. (2n+1,5)(2n+1,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,直線y=﹣x﹣1x軸,y軸的交點(diǎn)分別為A、B,以x=﹣1為對稱軸的拋物線y=x2+bx+cx軸分別交于點(diǎn)A、C,直線x=﹣1x軸交于點(diǎn)D.

(1)求拋物線的解析式;

(2)在線段AB上是否存在一點(diǎn)P,使以A,D,P為頂點(diǎn)的三角形與△AOB相似?若存在,求出點(diǎn)P的坐標(biāo);如果不存在,請說明理由;

(3)若點(diǎn)Q在第三象限內(nèi),且tan∠AQD=2,線段CQ是否存在最小值,如果存在直接寫出最小值;如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案