如圖,AB是⊙O的一條弦,點C是⊙O上一動點,且∠ACB=30°,點E、F分別是AC、BC的中點,直線EF與⊙O交于G、H兩點,若⊙O的半徑為9,則GE+FH的最大值為          

 


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:


計算:(1+sin60°)-  

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,雙曲線(x>0)經過四邊形OABC的頂點A、C,∠ABC=90°,OC平分OA與軸正半軸的夾角,AB∥軸,將△ABC沿AC翻折后得到△AB'C,B'點落在OA上,則四邊形OABC的面積是(   ).

   A.        B.          C.2         D.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖等腰梯形ABCD,AE是BC邊上的高。已知AE=4,CE=8,則梯形ABCD的面積是(  )A.16      B.32      C.24     D. 48

         (第3題)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


 如圖,在10×10的網(wǎng)格中,每個小方格都是邊長為1的小正方形,每個小正方形的頂點稱為格點。若拋物線經過圖中的三個格點,則以這三個格點為頂點的三角形稱為拋物線的“內接格點三角形”。以O為坐標原點建立如圖所示的平面直角坐標系,若拋物線與網(wǎng)格對角線OB的兩個交點之間的距離為,且這兩個交點與拋物線的頂點是拋物線的內接格點三角形的三個頂點,則滿足上述條件且對稱軸平行于軸的拋物線條數(shù)是(    )       

A. 16      B. 15      C. 14     D. 13

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


某商場銷售甲、乙兩種品牌的智能手機,這兩種手機的進價和售價如下表所示:

進價(元/部)

4000

2500

售價(元/部)

4300

3000

該商場計劃購進兩種手機若干部,共需15.5萬元,預計全部銷售后獲毛利潤共2.1萬元(毛利潤=(售價-進價)×銷售量)

(1)該商場計劃購進甲、乙兩種手機各多少部?

(2)通過市場調研,該商場決定在原計劃的基礎上,減少甲種手機的購進數(shù)量,增加乙種手機的購進數(shù)量,已知乙種手機增加的數(shù)量是甲種手機減少的數(shù)量的3倍,而且用于購進這兩種手機的總資金不超過17.25萬元,該商場怎樣進貨,使全部銷售后獲得的毛利潤最大?并求出最大毛利潤。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


下列關于x的方程一定有實數(shù)解的是(     )

A.                            B.

C.                 D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,正方形ABCD的邊長為3,將正方形ABCD繞點A順時針旋轉角度α(0°<α<90°),得到正方形AEFG,F(xiàn)E交線段DC于點Q,F(xiàn)E的延長線交線段BC于點P,連結AP、AQ.

(1)求證:△ADQ≌△AEQ;

(2)求證:PQ=DQ+PB;

(3)當∠1=∠2時,求PQ的長.(杭十五中模擬)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


 以下哪些選項可判斷二次函數(shù)與x軸有兩個交點:__________(只需填上正確的序號)

①a+b+c=0;②b>a+c;③b= 2a+3c;④ac<0

查看答案和解析>>

同步練習冊答案