【題目】附加題:

如圖,在中,,,垂足為,、分別為、的中點,,垂足為,求證:

【答案】見解析

【解析】

連接、,先證, 再證,得,可得,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可證明.

證明:連接、

ADBC,DF⊥BE

∴∠BFD=∠DFE=∠BDE=90°

∴∠BDF+∠FDE=∠FBD+∠BDF =90°,

∠FDE=∠FBD

,

∴∠BDF=DEF,

180°-∠BDF=180°-∠DEF

即∠FDC=∠FEA

EAD的中點

AE=DE

AB=AC,AD⊥BC

BD=CD

∴∠AFE=CFD

∴∠AFE+EFC=CFD+EFC

即∠AFC=∠EFD=90°

又∵GAC的中點,

∴在Rt△AFC中,

Rt△ADC中,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,直線l1x軸于點(1,0),直線l2x軸于點(2,0),直線l3x軸于點(3,0),,直線lnx軸于點(n,0).函數(shù)y=x的圖象與直線l1,l2,l3,ln分別交于點A1,A2A3,An;函數(shù)y=2x的圖象與直線l1,l2,l3,,ln分別交于點B1B2,B3,Bn.如果OA1B1的面積記作S1,四邊形A1A2B2B1的面積記作S2,四邊形A2A3B3B2的面積記作S3,,四邊形An-1AnBnBn-1的面積記作Sn,那么S2019=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于、兩點,其中點的坐標(biāo)為,點的坐標(biāo)為.

1)根據(jù)圖象,直接寫出滿足的取值范圍;

2)求這兩個函數(shù)的表達(dá)式;

3)點在線段上,且,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】3分)在同一平面直角坐標(biāo)系中,函數(shù)y=ax2+bxy=bx+a的圖象可能是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直徑為10的⊙A經(jīng)過點C(0,5)和點O (0,0)By軸右側(cè)⊙A優(yōu)弧上一點,則∠OBC 的余弦值為 _________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店以每件50元的價格購進800恤,第一個月以單價80元銷售,售出了200件.第二個月如果單價不變,預(yù)計仍可售出200件,該商店為增加銷售量決定降價銷售,根據(jù)市場調(diào)查,單價每降低1元,可多銷售出10件,但最低單價應(yīng)不低于50元,第二個月結(jié)束后,該商店對剩余的T恤一次性清倉,清倉時單價為40元.設(shè)第二個月單價降低元,

1)填表(用含的代數(shù)式完成表格中的①②③處)

時間

第一個月

第二個月

清倉

單價(元)

80

_______

40

銷售量(件)

200

_______

_______

2)如果該商店希望通過銷售這800恤獲利9000元,那么第二個月單價降低多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一商店銷售某種商品,平均每天可售出20件,每件盈利40元,為了擴大銷售,增加盈利,該店采取了降價措施,在每件盈利不少于25元的前提下,經(jīng)過一段時間銷售,發(fā)現(xiàn)銷售單價每降低1元,平均每天可多售出2件.

1)若降價a元,則平均每天銷售數(shù)量為 件.(用含a的代數(shù)式表示)

2)當(dāng)每件商品降價多少元時,該商店每天銷售利潤為1200元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)開展了行車安全,方便居民的活動,對地下車庫作了改進.如圖,這小區(qū)原地下車庫的入口處有斜坡AC長為13米,它的坡度為i12.4,ABBC,為了居民行車安全,現(xiàn)將斜坡的坡角改為13°,即∠ADC13°(此時點B、C、D在同一直線上).

1)求這個車庫的高度AB

2)求斜坡改進后的起點D與原起點C的距離(結(jié)果精確到0.1米).

(參考數(shù)據(jù):sin13°≈0.225,cos13°≈0.974tan13°≈0.231,cot13°≈4.331

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形內(nèi)接于,,對角線的直徑,交于點.點延長線上,且

1)證明:;

2)若,求的長;

3)若于點,連接.證明:的切線.

查看答案和解析>>

同步練習(xí)冊答案