【題目】如圖,在平面直角坐標系中,拋物線y=(x-2)2x軸交于點A,與y軸交于點B,過點BBCx軸,交拋物線于點C,過點AADy軸,交BC于點D,點PBC下方的拋物線上(不與點B,C重合),連接PC,PD,設PCD的面積為S,則S的最大值是________。

【答案】4

【解析】

根據(jù)拋物線的解析式求得A、B的坐標,和對稱軸方程,根據(jù)BCx軸,ADy軸對稱BC是拋物線上的對稱點,所以BD=DC=2,因為頂點A到直線BC的距離最大,所以點PA重合時,△PCD面積最大,最大值為DCAD=×2×4=4

∵拋物線y=(x2)2x軸交于點A,與y軸交于點B.
A(2,0),B(0,4),
∵拋物線y=(x2)2與的對稱軸為x=2,BCx,ADy軸,
∴直線AD就是拋物線y=(x2)2與的對稱軸,
BC關于直線BD對稱,
BD=DC=2
∵頂點A到直線BC的距離最大,
∴點PA重合時,PCD面積最大,最大值為DCAD=×2×4=4.
故最大值為4.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=x2-4x-3,下列說法中正確的是(

A.該函數(shù)圖象的開口向下B.該函數(shù)圖象的頂點坐標是(-2,-7)

C.x<0時,yx的增大而增大D.該函數(shù)圖象與x軸有兩個不同的交點,且分布在坐標原點兩側

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,以AB為直徑作O,OBC的中點D,過點DDEAC,垂足為E.求證:

1DEO的切線;

2ABAC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】泉州市旅游資源豐富,①清源山、②開元寺、③崇武古城三個景區(qū)是人們節(jié)假日玩的熱點景區(qū),張老師對八(1)班學生五·一小長假隨父母到這三個景區(qū)游玩的計劃做了全面調查,調查分四個類別:A、游三個景區(qū);B,游兩個景區(qū);C,游一個景區(qū):D,不到這三個景區(qū)游玩現(xiàn)根據(jù)調查結果繪制了不完整的條形統(tǒng)計圖和廟形統(tǒng)計圖,請結合圖中信息解答下列問題:

1)八(1)班共有學生   人在扇形統(tǒng)計圖中,表示B類別的扇形的圓心角的度數(shù)為   ;

2)請將條形統(tǒng)計圖補充完整;

3)若小華、小剛兩名同學,各自從三個最區(qū)中隨機選一個作為51日游玩的景區(qū),請用樹狀圖或列表法求他們選中同個景區(qū)的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABDE直立在地面上的兩根立柱,已知AB=5m,某一時刻AB在太陽光下的影子長BC=3m

1)在圖中畫出此時DE在太陽光下的影子EF;

2)在測量AB影子長時,同時測量出EF=6m,計算DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線m為常數(shù))交y軸于點A,與x軸的一個交點在23之間,頂點為B.①拋物線與直線有且只有一個交點;②若點、點、點在該函數(shù)圖象上,則;③將該拋物線向左平移2個單位,再向下平移2個單位,所得拋物線解析式為;④點A關于直線的對稱點為C,點D、E分別在x軸和y軸上,當時,四邊形BCDE周長的最小值為.其中正確判斷的序號是__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠ACB90°,點OAC上,以O為圓心,OC為半徑作⊙O,過點AADBOBO的延長線于點D.則下列結論中:①點A、BC、D在同一個圓上;②∠ABC2CAD;③若∠BOC=∠BAD,則AB與⊙O相切,正確的結論是( 。

A.①②③B.①②C.②③D.①③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形ABCD在第一象限內,邊BCx軸平行,A,B兩點的縱坐標分別為42,反比例函數(shù)yx0)的圖象經(jīng)過A,B兩點,若菱形ABCD的面積為2,則k的值為( 。

A. 2B. 3C. 4D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形中,對角線交于點. 中點,連接于點,且.

1)求的長;

2)若的面積為2,求四邊形的面積.

查看答案和解析>>

同步練習冊答案