【題目】2017黑龍江省綏化市)已知關(guān)于x的一元二次方程

1)當(dāng)m為何值時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根?

2)若邊長為5的菱形的兩條對(duì)角線的長分別為方程兩根的2倍,求m的值.

【答案】1m>﹣;(2m=﹣4

【解析】試題(1)根據(jù)方程的系數(shù)結(jié)合根的判別式,即可得出△=4m+170,解之即可得出結(jié)論;

2)設(shè)方程的兩根分別為a、b,根據(jù)根與系數(shù)的關(guān)系結(jié)合菱形的性質(zhì),即可得出關(guān)于m的一元二次方程,解之即可得出m的值,再根據(jù)a+b=﹣2m10,即可確定m的值.

試題解析:(1)∵方程有兩個(gè)不相等的實(shí)數(shù)根,∴△==4m+170,解得:m>﹣,∴當(dāng)m>﹣時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根.

2)設(shè)方程的兩根分別為ab,根據(jù)題意得:a+b=﹣2m1,ab=

2a2b為邊長為5的菱形的兩條對(duì)角線的長,∴= =2m2+4m+9=52=25,解得:m=﹣4m=2

a0b0,∴a+b=﹣2m10,∴m=﹣4

若邊長為5的菱形的兩條對(duì)角線的長分別為方程兩根的2倍,則m的值為﹣4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】母親節(jié)前期,某花店購進(jìn)康乃馨和玫瑰兩種鮮花,銷售過程中發(fā)現(xiàn)康乃馨比玫瑰銷售量大,店主決定將玫瑰每枝降價(jià)1元促銷,降價(jià)后30元可購買玫瑰的數(shù)量是原來購買玫瑰數(shù)量的1.5倍.

(1)求降價(jià)后每枝玫瑰的售價(jià)是多少元?

(2)根據(jù)銷售情況,店主用不多于900元的資金再次購進(jìn)兩種鮮花共500枝,康乃馨進(jìn)價(jià)為2/枝,玫瑰進(jìn)價(jià)為1.5/枝,問至少購進(jìn)玫瑰多少枝?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,,點(diǎn)邊上一定點(diǎn),且,點(diǎn)是線段上一動(dòng)點(diǎn),連接,以為斜邊在的右側(cè)作等腰直角.當(dāng)點(diǎn)從點(diǎn)出發(fā)運(yùn)動(dòng)至點(diǎn)停止時(shí),點(diǎn)的運(yùn)動(dòng)的路徑長為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=(2m+4x+(3n).

1)當(dāng)mn是什么數(shù)時(shí),yx的增大而增大;

2)當(dāng)mn是什么數(shù)時(shí),函數(shù)圖象經(jīng)過原點(diǎn);

3)若圖象經(jīng)過一、二、三象限,求m、n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個(gè)滑道由滑坡(AB段)和緩沖帶(BC段)組成,滑雪者在滑坡上滑行的距離y1(單位:m)和滑行時(shí)間t1(單位s)滿足二次函數(shù)關(guān)系,并測(cè)得相關(guān)數(shù)據(jù):

滑行時(shí)間t1/s

0

1

2

3

4

滑行距離y1/s

0

4.5

14

28.5

48

滑雪者在緩沖帶上滑行的距離y2(單位:m)和滑行時(shí)間t2(單位:s)滿足:y2=52t2﹣2t22,滑雪者從A出發(fā)在緩沖帶BC上停止,一共用了23s.

(1)求y1和t1滿足的二次函數(shù)解析式;

(2)求滑坡AB的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖某水平地面上建筑物的高度為AB,在點(diǎn)D和點(diǎn)F處分別豎立高是2米的標(biāo)桿CDEF,兩標(biāo)桿相隔52,并且建筑物AB,標(biāo)桿CDEF在同一豎直平面內(nèi),從標(biāo)桿CD后退2米到點(diǎn)GG處測(cè)得建筑物頂端A和標(biāo)桿頂端C在同一條直線上;從標(biāo)桿FE后退4米到點(diǎn)H,H處測(cè)得建筑物頂端A和標(biāo)桿頂端E在同一條直線上,求建筑物的高

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線y1=x2﹣4x+4的頂點(diǎn)為A,直線y2=kx﹣2k(k≠0),

(1)試說明直線是否經(jīng)過拋物線頂點(diǎn)A;

(2)若直線y2交拋物線于點(diǎn)B,且△OAB面積為1時(shí),求B點(diǎn)坐標(biāo);

(3)過x軸上的一點(diǎn)M(t,0)(0≤t≤2),作x軸的垂線,分別交y1,y2的圖象于點(diǎn)P,Q,判斷下列說法是否正確,并說明理由:

當(dāng)k>0時(shí),存在實(shí)數(shù)t(0≤t≤2)使得PQ=3.

當(dāng)﹣2<k<﹣0.5時(shí),不存在滿足條件的t(0≤t≤2)使得PQ=3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l1過點(diǎn)A30),且與直線l2交于點(diǎn)Bm,1).

1)求直線l1的函數(shù)表達(dá)式;

2)過動(dòng)點(diǎn)Pn,0)且垂于x軸的直線與l1l2分別交于點(diǎn)C、D,當(dāng)點(diǎn)C位于點(diǎn)D上方時(shí),直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,AD是△ABC的角平分線,DE、DF分別是△ABD和△ACD的高。求證:AD垂直平分EF。

查看答案和解析>>

同步練習(xí)冊(cè)答案