【題目】如圖,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.動點M,N從點C同時出發(fā),均以每秒1cm的速度分別沿CA、CB向終點A,B移動,同時動點P從點B出發(fā),以每秒2cm的速度沿BA向終點A移動,連接PM,PN,設移動時間為t(單位:秒,0<t<2.5).
(1)當t為何值時,以A,P,M為頂點的三角形與△ABC相似?
(2)是否存在某一時刻t,使四邊形APNC的面積S有最小值?若存在,求S的最小值;若不存在,請說明理由.
【答案】解:∵如圖,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.
∴根據(jù)勾股定理,得AB=。
(1)以A,P,M為頂點的三角形與△ABC相似,分兩種情況:
①當△AMP∽△ABC時,,即,解得;
②當△APM∽△ABC時,,即,解得t=0(不合題意,舍去)。
綜上所述,當時,以A、P、M為頂點的三角形與△ABC相似。
(2)存在某一時刻t,使四邊形APNC的面積S有最小值.理由如下:
假設存在某一時刻t,使四邊形APNC的面積S有最小值。
如圖,過點P作PH⊥BC于點H.則PH∥AC,
∴,即。∴。
∴。
∵>0,∴S有最小值。
當t= 時,S最小值=.
答:當t=時,四邊形APNC的面積S有最小值,其最小值是。
【解析】
試題根據(jù)勾股定理求得AB=5cm。
(1)分△AMP∽△ABC和△APM∽△ABC兩種情況討論:利用相似三角形的對應邊成比例來求t的值。
(2)如圖,過點P作PH⊥BC于點H,構造平行線PH∥AC,由平行線分線段成比例求得以t表示的PH的值;然后根據(jù)“S=S△ABC﹣S△BPH”列出S與t的關系式,則由二次函數(shù)最值的求法即可得到S的最小值。
科目:初中數(shù)學 來源: 題型:
【題目】在我市某一城市美化工程招標時,有甲、乙兩個工程隊投標,經測算:甲隊單獨完成這項工程需要60天,若由甲隊先做20天,剩下的工程由甲、乙合作24天可完成.
(1)乙隊單獨完成這項工程需要多少天?
(2)甲隊施工一天,需付工程款3.5萬元,乙隊施工一天需付工程款2萬元.若該工程計劃在70天內完成,在不超過計劃天數(shù)的前提下,是由甲隊或乙隊單獨完成工程省錢?還是由甲乙兩隊全程合作完成該工程省錢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】石獅泰禾某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進價為80元,銷售價為120元時,每天可售出20件,為了迎接“十一”國慶節(jié),商店決定采取適當?shù)慕祪r措施,以擴大銷售量,增加利潤,經市場調查發(fā)現(xiàn),如果每件童裝降價1元,那么平均可多售出2件.
(1)設每件童裝降價x元時,每天可銷售______ 件,每件盈利______ 元;(用x的代數(shù)式表示)
(2)每件童裝降價多少元時,平均每天贏利1200元.
(3)要想平均每天贏利2000元,可能嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的方程x2+ax+a-2=0.
(1)求證:不論a取何實數(shù),該方程都有兩個不相等的實數(shù)根;
(2)若該方程的一個根為1,求a的值及該方程的另一根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,圖中的小方格都是邊長為1的正方形, △ABC與△A′ B′ C′是關于點0為位似中心的位似圖形,它們的頂點都在小正方形的頂點上.
(1)畫出位似中心點0;
(2)求出△ABC與△A′B′C′的位似比;
(3)以點0為位似中心,再畫一個△A1B1C1,使它與△ABC的位似比等于1.5.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,要在河邊修建一個水泵站,分別向張村A和李莊B送水,已知張村A、李莊B到河邊的距離分別為2km和7km,且張、李二村莊相距13km.
(1)水泵應建在什么地方,可使所用的水管最短?請在圖中設計出水泵站的位置.
(2)如果鋪設水管的工程費用為每千米1500元,為使鋪設水管費用最節(jié)省,請求出最節(jié)省的鋪設水管的費用為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在數(shù)學興趣小組的活動中,小明進行數(shù)學探究活動,將邊長為2的正方形ABCD與邊長為2的正方形AEFG按圖①位置放置,AD與AE在同一直線上,AB與AG在同一直線上.
⑴小明發(fā)現(xiàn)DG⊥BE,請你幫他說明理由.
⑵如圖②,小明將正方形ABCD繞點A逆時針旋轉,當點B恰好落在線段DG上時,請你幫他求出此時BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某養(yǎng)殖戶每年的養(yǎng)殖成本包括固定成本和可變成本,其中固定成本每年均為4萬元,可變成本逐年增長,已知該養(yǎng)殖戶第一年的可變成本為2.6萬元,設可變成本平均每年增長的百分率為
(1)用含x的代數(shù)式表示低3年的可變成本為 萬元;
(2)如果該養(yǎng)殖戶第3年的養(yǎng)殖成本為7.146萬元,求可變成本平均每年的增長百分率x.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一幅長80cm,寬50cm的矩形風景畫的四周鑲一條金色紙邊,制成一幅矩形掛圖,如果要使整個掛圖的面積是ycm2,設金色紙邊的寬為xcm,要求紙邊的寬度不得少于1cm,同時不得超過2cm.
(1)求出y關于x的函數(shù)解析式,并直接寫出自變量的取值范圍;
(2)此時金色紙邊的寬應為多少cm時,這幅掛圖的面積最大?求出最大面積的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com