【題目】請根據(jù)證明過程,在括號內(nèi)填寫相應理由,如圖,已知B、E分別是AC、DF上的點,∠1=∠2,∠C=∠D,
求證:∠A=∠F.
證明:因為∠1=∠2(已知)
所以BD∥CE( )所以∠C=∠ABD( )因為∠C=∠D( )
所以∠D=∠ABD( )
所以DF∥AC( )所以∠A=∠F( )
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB=120°,OP平分∠AOB,且OP=3,若點M,N分別在OA,OB上,ΔPMN為等邊三角形,則滿足上述條件的△PMN有中( )
A. 1個B. 2個C. 3個D. 3個以上
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某一天,小明和小亮來到一河邊,想用遮陽帽和皮尺測量這條河的大致寬度,兩人在確保無安全隱患的情況下,先在河岸邊選擇了一點B(點B與河對岸岸邊上的一棵樹的底部點D所確定的直線垂直于河岸).
①小明在B點面向樹的方向站好,調(diào)整帽檐,使視線通過帽檐正好落在樹的底部點D處,如圖所示,這時小亮測得小明眼睛距地面的距離AB=1.7米;
②小明站在原地轉(zhuǎn)動180°后蹲下,并保持原來的觀察姿態(tài)(除身體重心下移外,其他姿態(tài)均不變),這時視線通過帽檐落在了DB延長線上的點E處,此時小亮測得BE=9.6米,小明的眼睛距地面的距離CB=1.2米.
根據(jù)以上測量過程及測量數(shù)據(jù),請你求出河寬BD是多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們給出如下定義:若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱這個四邊形為勾股四邊形,這兩條相鄰的邊稱為這個四邊形的勾股邊.
(1)寫出你所學過的特殊四邊形中是勾股四邊形的一種圖形的名稱 ;
(2)如圖 1,已知格點(小正方形的頂點)O(0,0),A(3,0),B(0,4),請你直接寫出所有以格點為頂點,OA、OB 為勾股邊且有對角線相等的勾股四邊形 OAMB 的頂點M 的坐標: ;
(3)如圖 2,將△ABC 繞頂點 B 按順時針方向旋轉(zhuǎn) 60°,得到△DBE,連接 AD、DC,∠DCB=30°.求證: DC2 BC2 AC2 ,即四邊形 ABCD 是勾股四邊形;
(4)若將圖 2 中△ABC 繞頂點 B 按順時針方向旋轉(zhuǎn) a 度(0°<a <90°),得到△DBE,連接 AD、DC,則當∠DCB= °時,四邊形BECD 是勾股四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,點A、B分別在x、y軸上,點B的坐標為(0,1),∠BAO=30°.
(1)求AB的長度;
(2)以AB為一邊作等邊△ABE,作OA的垂直平分線MN交AB的垂線AD于點D.求證:BD=OE;
(3)在(2)的條件下,連接DE交AB于F.求證:F為DE的中點.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某環(huán)保小組為了解世博園的游客在園區(qū)內(nèi)購買瓶裝飲料數(shù)量的情況,一天,他們分別在A、B、C三個出口處,對離開園區(qū)的游客進行調(diào)查,其中在A出口調(diào)查所得的數(shù)據(jù)整理后繪成如下圖所示統(tǒng)計圖:
(1)在A出口的被調(diào)查游客中,購買瓶裝飲料的數(shù)量的中位數(shù)是______瓶、眾數(shù)是______瓶、平均數(shù)是______瓶;
(2)已知A、B、C三個出口的游客量比為2:2:1,用上面圖表的人均購買飲料數(shù)量計算:這一天景區(qū)內(nèi)若有50萬游客,那么這一天購買的飲料的總數(shù)是多少?
表一:
出口 | B | C |
人均購買飲料數(shù)量(瓶) | 3 | 2 |
(3)若每瓶飲料要消耗0.5元處理包裝的環(huán)保費用,該日需要花費多少錢處理這些飲料瓶?由此請你對游客做一點環(huán)保宣傳建議.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,四邊形ABCD中,AB∥CD,∠B=90°,AC=AD.動點P從點B出發(fā)沿折線B-A-D-C方向以1單位/秒的速度運動,在整個運動過程中,△BCP的面積S與運動時間t(秒)的函數(shù)圖象如圖2所示,則AD等于( 。
A. 10B. C. 8D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線l//AB,l與AB之間的距離為2.C、D是直線l上兩個動點(點C在D點的左側(cè)),且AB=CD=5.連接AC、BC、BD,將△ABC沿BC折疊得到△A′BC.下列說法:①四邊形ABDC的面積始終為10;②當A′與D重合時,四邊形ABDC是菱形;③當A′與D不重合時,連接A′、D,則∠CA′D+∠BC A′=180°;④若以A′、C、B、D為頂點的四邊形為矩形,則此矩形相鄰兩邊之和為3或7.其中正確的是( )
A. ①②③④B. ①③④C. ①②④D. ①②③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com