【題目】在平面直角坐標系中,把一條拋物線先向上平移3個單位長度,然后繞原點選擇180°得到拋物線y=x2+5x+6,則原拋物線的解析式是( 。
A.y=﹣(x﹣ 2
B.y=﹣(x+ 2
C.y=﹣(x﹣ 2
D.y=﹣(x+ 2+

【答案】A
【解析】解:∵拋物線的解析式為:y=x2+5x+6,
∴繞原點選擇180°變?yōu),y=﹣x2+5x﹣6,即y=﹣(x﹣ 2+ ,
∴向下平移3個單位長度的解析式為y=﹣(x﹣ 2+ ﹣3=﹣(x﹣ 2
故選A.
先求出繞原點旋轉180°的拋物線解析式,求出向下平移3個單位長度的解析式即可.本題考查的是二次函數(shù)的圖象與幾何變換,熟知二次函數(shù)的圖象旋轉及平移的法則是解答此題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=10,點D是邊BC上一動點(不與B,C重合),∠ADE=∠B=α,DE交AC于點E,且cosα= .下列結論:①△ADE∽△ACD;②當BD=6時,△ABD與△DCE全等;③△DCE為直角三角形時,BD為8;④0<CE≤6.4.其中正確的結論是 . (把你認為正確結論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題背景: 如圖①,在四邊形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究線段AC,BC,CD之間的數(shù)量關系.
小吳同學探究此問題的思路是:將△BCD繞點D,逆時針旋轉90°到△AED處,點B,C分別落在點A,E處(如圖②),易證點C,A,E在同一條直線上,并且△CDE是等腰直角三角形,所以CE= CD,從而得出結論:AC+BC= CD.
簡單應用:

(1)在圖①中,若AC= ,BC=2 ,則CD=
(2)如圖③,AB是⊙O的直徑,點C、D在⊙上, = ,若AB=13,BC=12,求CD的長. 拓展規(guī)律:
(3)如圖④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的長(用含m,n的代數(shù)式表示)
(4)如圖⑤,∠ACB=90°,AC=BC,點P為AB的中點,若點E滿足AE= AC,CE=CA,點Q為AE的中點,則線段PQ與AC的數(shù)量關系是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于反比例函數(shù)y=﹣ ,下列說法不正確的是(
A.圖象經過點(1,﹣3)
B.圖象分布在第二、四象限
C.當x>0時,y隨x的增大而增大
D.點A(x1 , y1)、B(x2、y2)都在反比例函數(shù)y=﹣ 的圖象上,若x1<x2 , 則y1<y2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2017年深圳市男生體育中考考試項目為二項,在200米和1000米兩個項目中選一個項目;另外在運球上籃、實心球、跳繩、引體向上四個項目中選一個.
(1)每位男考生一共有種不同的選擇方案;
(2)若必勝,必成第一個項目都恰好選了200米,然后在第二組四個項目中各任意選取另外一個用畫樹狀圖或列表的方法求必勝和必成選擇同種方案的概率. (友情提醒:各種方案可用A、B、C、…或①、②、③、…等符號來代表可簡化解答過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結論:①b<0;②c>0;③a+c<b;④b2﹣4ac>0,其中正確的個數(shù)是(  )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,二次函數(shù)y=﹣ x2+bx+c的圖象與坐標軸交于A、B、C三點,其中點A的坐標為(0,8),點B的坐標為(﹣4,0).

(1)求該二次函數(shù)的表達式及點C的坐標;
(2)點D的坐標為(0,4),點F為該二次函數(shù)在第一象限內圖象上的動點,連接CD、CF,以CD、CF為鄰邊作平行四邊形CDEF,設平行四邊形CDEF的面積為S.
①求S的最大值;
②在點F的運動過程中,當點E落在該二次函數(shù)圖象上時,請直接寫出此時S的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知拋物線y=ax2+bx﹣2(a≠0)與x軸交于A(1,0)、B(3,0)兩點,與y軸交于點C,其頂點為點D,點E的坐標為(0,﹣1),該拋物線與BE交于另一點F,連接BC.

(1)求該拋物線的解析式,并用配方法把解析式化為y=a(x﹣h)2+k的形式;
(2)若點H(1,y)在BC上,連接FH,求△FHB的面積;
(3)一動點M從點D出發(fā),以每秒1個單位的速度平沿行與y軸方向向上運動,連接OM,BM,設運動時間為t秒(t>0),在點M的運動過程中,當t為何值時,∠OMB=90°?
(4)在x軸上方的拋物線上,是否存在點P,使得∠PBF被BA平分?若存在,請直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,AB=AC,BAC=30°,ABC的面積為49,P為直線BC上一點,PEAB,PFAC,CHAB,垂足分別為E,F(xiàn),H.若PF=3,則PE=________

查看答案和解析>>

同步練習冊答案