【題目】在平面直角坐標(biāo)系中,已知點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),點(diǎn)是軸上的一個(gè)動(dòng)點(diǎn),當(dāng)是等腰三角形時(shí),值個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
【答案】D
【解析】
首先根據(jù)關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)規(guī)律可得P′的坐標(biāo)為(2,1),再根據(jù)△P′TO是等腰三角形分三種情況情況討論:P′Q=P′O時(shí);P′Q=QO時(shí);OQ=P′O時(shí)分別求解即可.
∵點(diǎn)P(-4,3),
∴關(guān)于y軸的對(duì)稱點(diǎn)P′的坐標(biāo)為(4,3),
則,
對(duì)于△P′QO是等腰三角形分三種情況情況討論:
(1)當(dāng)是等腰三角形的底邊時(shí),點(diǎn)就是的垂直平分線與軸的交點(diǎn),根據(jù)三角形相似可得:,則的值是;
(2)當(dāng)是等腰三角形的腰時(shí),若點(diǎn)是頂角頂點(diǎn),則點(diǎn)就是以點(diǎn)為圓心,以為半徑的圓與軸的交點(diǎn),其坐標(biāo)分別是,則的值是8;
若點(diǎn)是頂角頂點(diǎn),則點(diǎn)就是以點(diǎn)為圓心,以為半徑的圓與軸有2個(gè)交點(diǎn),其坐標(biāo)分別為、,則的值是5或-5.
由(1)(2)可知t的值是或8或5或-5.
綜上值個(gè)數(shù)是4個(gè).
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BC=4,AC=4,點(diǎn)D是BC的中點(diǎn),點(diǎn)E是邊AB上一動(dòng)點(diǎn),沿DE所在直線把△BDE翻折到△B′DE的位置,B′D交AB于點(diǎn)F.若∠AB′F為直角,則AE的長(zhǎng)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以為斜邊作和,,,垂足為點(diǎn),點(diǎn)是線段上一點(diǎn),連接分別交于,過(guò)點(diǎn)作,交延長(zhǎng)線于點(diǎn),.
(1)求證:;
(2)若,求的長(zhǎng);
(3)若,,求線段的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】初三(3)班學(xué)生的家距離學(xué)校人數(shù)的頻數(shù)分布直方圖如圖所示,則下列說(shuō)法中不正確的一項(xiàng)是( )
A.初三(3)班共有54名學(xué)生,其中家距離學(xué)校20-30km的學(xué)生人數(shù)為中位數(shù).
B.初三(3)班學(xué)生的家距離學(xué)校為0-10km的學(xué)生人數(shù)的組中值為5km
C.初三(3)班學(xué)生的家距離學(xué)校為0-10km的學(xué)生人數(shù)為眾數(shù)
D.初三(3)班學(xué)生的家距離學(xué)校各組數(shù)據(jù)的組中值的平均數(shù)為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△DEF由△ABC平移得到,∠DFE=∠CDF=30°,∠DEF=90°,BE⊥DF于點(diǎn)B.連接CE,AB=3.
(1)求證:四邊形ACDF為矩形
(2)求線段CE的長(zhǎng)和△CEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1是一個(gè)高腳杯截面圖,杯體呈拋物線狀(杯體厚度不計(jì)),點(diǎn)是拋物線的頂點(diǎn),,點(diǎn)是的中點(diǎn),當(dāng)高腳杯中裝滿液體時(shí),液面,此時(shí)最大深度(液面到最低點(diǎn)的距離)為,將高腳杯繞點(diǎn)緩緩傾斜倒出部分液體,當(dāng)時(shí)停止,此時(shí)液面為,則液面到平面的距離是________________;此時(shí)杯體內(nèi)液體的最大深度為_____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,.點(diǎn)從點(diǎn)出發(fā),沿方向以每秒個(gè)單位長(zhǎng)度的速度向終點(diǎn)運(yùn)動(dòng)(點(diǎn)不與重合),過(guò)點(diǎn)作交折線于點(diǎn)以為邊問(wèn)下作正方形點(diǎn)落在邊上設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為(秒).
(1)直接用含的代數(shù)式表示線段的長(zhǎng).
(2)當(dāng)點(diǎn)落在邊上時(shí),求的值.
(3)當(dāng)正方形與重疊部分圖形為四邊形時(shí),設(shè)四邊形的面積為(平方單位),求與之間的函數(shù)關(guān)系式.
(4)點(diǎn)為邊的中點(diǎn),直接寫出直線將正方形分成的兩部分圖形的面積比為時(shí)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=2,∠ABC=45°,點(diǎn)E為射線AD上一動(dòng)點(diǎn),連接BE,將BE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BF,連接AF,則AF的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線與一直線相交于,兩點(diǎn).
(1)求拋物線的函數(shù)表達(dá)式;
(2)求直線的函數(shù)表達(dá)式;
(3)若是拋物線上位于直線上方的一個(gè)動(dòng)點(diǎn),求面積的最大值及此時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com