如圖,在△ABC中,∠ABC=90°,以AB的中點(diǎn)O為圓心、OA為半徑的圓交AC于點(diǎn)D,E是BC的中點(diǎn),連接DE,OE.
(1)判斷DE與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)求證:BC2=CD•2OE;
(3)若cos∠BAD=,BE=6,求OE的長(zhǎng).
(1)證明:連接OD,BD,
∵AB為圓O的直徑,
∴∠ADB=90°,
在Rt△BDC中,E為斜邊BC的中點(diǎn),
∴CE=DE=BE=BC,
∴∠C=∠CDE,
∵OA=OD,
∴∠A=∠ADO,
∵∠ABC=90°,即∠C+∠A=90°,
∴∠ADO+∠CDE=90°,即∠ODE=90°,
∴DE⊥OD,又OD為圓的半徑,
∴DE為⊙O的切線;
(2)證明:∵E是BC的中點(diǎn),O點(diǎn)是AB的中點(diǎn),
∴OE是△ABC的中位線,
∴AC=2OE,
∵∠C=∠C,∠ABC=∠BDC,
∴△ABC∽△BDC,
∴=,即BC2=AC•CD.
∴BC2=2CD•OE;
(3)解:∵cos∠BAD=,
∴sin∠BAC==,
又∵BE=6,E是BC的中點(diǎn),即BC=12,
∴AC=15.
又∵AC=2OE,
∴OE=AC=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖是一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán),轉(zhuǎn)盤(pán)分為6個(gè)大小相同的扇形,指針的位置固定,轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán)停止后,其中的某個(gè)扇形會(huì)恰好停在指針?biāo)傅奈恢茫ㄖ羔樦赶騼蓚(gè)扇形的交線時(shí),當(dāng)作指向右邊的扇形),指針指向陰影區(qū)域的概率是( 。
| A. |
| B. |
| C. |
| D. |
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知關(guān)于x的一元二次方程x2+x+m2﹣2m=0有一個(gè)實(shí)數(shù)根為﹣1,求m的值及方程的另一實(shí)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,對(duì)稱(chēng)軸為x=,且經(jīng)過(guò)點(diǎn)(2,0),有下列說(shuō)法:①abc<0;②a+b=0;③4a+2b+c<0;④若(0,y1),(1,y2)是拋物線上的兩點(diǎn),則y1=y2.上述說(shuō)法正確的是( 。
| A. | ①②④ | B. | ③④ | C. | ①③④ | D. | ①② |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,AB∥CD,直線EF分別交直線AB,CD于點(diǎn)E,F(xiàn).若∠1=46°30′,則∠1的度數(shù)為( 。
| A. | 43°30′ | B. | 53°30′ | C. | 133°30′ | D. | 153°30′ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖是某校學(xué)生參加課外興趣小組的人數(shù)占總?cè)藬?shù)比例的 統(tǒng)計(jì)圖,則參加人數(shù)最多的課外興趣小組是 ( )
A、音樂(lè)組 B、美術(shù)組 C、體育組 D、科技組
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
太原市公共自行車(chē)的建設(shè)速度、單日租騎量等四項(xiàng)指標(biāo)穩(wěn)居全國(guó)首位.公共自行車(chē)車(chē)樁的截面示意圖如圖所示,AB⊥AD,AD⊥DC,點(diǎn)B,C在EF上,EF∥HG,EH⊥HG,AB=80cm,AD=24cm,BC=25cm,EH=4cm,則點(diǎn)A到地面的距離是 cm.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com