為了從甲、乙兩名選手中選拔一個(gè)參加射擊比賽,現(xiàn)對(duì)他們進(jìn)行一次測(cè)驗(yàn),兩個(gè)人在相同條件下各射靶10次,為了比較兩人的成績,制作了統(tǒng)計(jì)表和統(tǒng)計(jì)圖:
甲、乙射擊成績統(tǒng)計(jì)表
平均數(shù) | 中位數(shù) | 方差 | 命中10環(huán)的次數(shù) | |
甲 | 7 | 0 | ||
乙 | 1 |
(1)請(qǐng)補(bǔ)全上述圖表(直接在表中填空和補(bǔ)全折線圖);
(2)如果規(guī)定成績較穩(wěn)定者勝出,你認(rèn)為誰應(yīng)勝出?說明你的理由;
(3)如果希望(2)中的另一名選手勝出,根據(jù)圖表中的信息,應(yīng)該制定怎樣的評(píng)判規(guī)則?為什么?
(1)甲、乙射擊成績統(tǒng)計(jì)表
(2)甲
(3)希望乙勝出,規(guī)則為命中9環(huán)與10環(huán)的總數(shù)大的勝出.因?yàn)橐颐?環(huán)與10環(huán)的總數(shù)為3次,而甲只命中2次.
【解析】
(1)根據(jù)折線統(tǒng)計(jì)圖得乙的射擊成績?yōu)?,4,6,7,7,8,8,9,9,10,則平均數(shù)為,中位數(shù)為7.5,方差為×[(2-7)2+(4-7)2+(6-7)2+(8-7)2+(7-7)2+(7-7)2+(8-7)2+(9-7)2+(9-7)2+(10-7)2]=5.4;
由表知甲的射擊成績的平均數(shù)為7,則甲第8次射擊成績?yōu)?0-(9+6+7+6+5+7+7+8+9)=6(環(huán)),故10次射擊成績?yōu)?,6,6,6,7,7,7,8,9,9,中位數(shù)為7,方差為×[(5-7)2+(6-7)2+(6-7)2+(6-7)2+(7-7)2+(7-7)2+(7-7)2+(8-7)2+(9-7)2+(9-7)2]=1.6,補(bǔ)全圖表如下:
甲、乙射擊成績統(tǒng)計(jì)表
(2)因?yàn)閮扇松鋼舫煽兊钠骄鶖?shù)相同,但甲的方差小于乙的方差,故甲勝出.
(3)希望乙勝出,規(guī)則為命中9環(huán)與10環(huán)的總數(shù)大的勝出.因?yàn)橐颐?環(huán)與10環(huán)的總數(shù)為3次,而甲只命中2次.
【難度】困難
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
可通過求證,則能證明
【解析】
試題分析:證明:∵,,
∴,
∴AD∥BC(同旁內(nèi)角互補(bǔ),兩直線平行)!(兩直線平行,內(nèi)錯(cuò)角相等)。
又∵BD⊥CD,EF⊥CD!,∴BD∥EF,∴,∴
【難度】一般
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b的圖象與x軸相交于點(diǎn)A(-3,0),與y軸交于點(diǎn)B,且與正比例函數(shù)y=的圖象交點(diǎn)為C(m,4)求:
(1)一次函數(shù)y=kx+b的解析式;
(2)若點(diǎn)D在第二象限,△DAB是以AB為直角邊的等腰直角三角形,直接寫出點(diǎn)D的坐標(biāo).
(3)在x軸上求一點(diǎn)P使△POC為等腰三角形,請(qǐng)直接寫出所有符合條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
有關(guān)部門從甲、乙兩個(gè)城市所有的自動(dòng)售貨機(jī)中分別隨機(jī)抽取了16臺(tái),記錄下某一天各自的銷售情況(單位:元):
甲:l8, 8,10,43, 5,30,10,22, 6,27,25,58,14,18,30,41
乙:22,31,32,42,20,27,48,23,38,43,12,34,18,l0,34,23
小強(qiáng)用如圖所示的方法表示甲城市16臺(tái)自動(dòng)售貨機(jī)的銷售情況.
(1)請(qǐng)你仿照小強(qiáng)的方法將乙城市16臺(tái)自動(dòng)售貨機(jī)的銷售情況表示出來;
(2)用不等號(hào)填空:甲_____乙;s_____s;
(3)請(qǐng)說出此種表示方法的優(yōu)點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,四邊形ABCD中,∠ABC=90°,CD⊥AD,,
(1)求證:AB=BC;
(2)過點(diǎn)B作BE⊥AD于E,若四邊形ABCD的面積為,求BE的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com