【題目】如圖,正方形ABCD中,BE=FC,CF=2FD,AE、BF交于點G,連接AF,給出下列結(jié)論:①AE⊥BF; ②AE=BF; ③BG=GE; ④S四邊形CEGF=S△ABG,其中正確的個數(shù)為( 。
A.1個B.2個C.3個D.4個
【答案】C
【解析】
根據(jù)正方形的性質(zhì)證明△ABE≌△BCF,可得①AE⊥BF; ②AE=BF,證明△BGE∽△ABE,可得,故③不正確;由S△ABE=S△BFC可得S四邊形CEGF=S△ABG,故④正確.
解:在正方形ABCD中,AB=BC,∠ABE=∠C=90,
又∵BE=CF,
∴△ABE≌△BCF(SAS),
∴AE=BF,∠BAE=∠CBF,
∴∠FBC+∠BEG=∠BAE+∠BEG=90°,
∴∠BGE=90°,
∴AE⊥BF.
故①,②正確;
∵CF=2FD,BE=CF,AB=CD,
∴,
∵∠EBG+∠ABG=∠ABG+∠BAG=90°,
∴∠EBG=∠BAG,
∵∠EGB=∠ABE=90°,
∴△BGE∽△ABE,
∴;
故③不正確
∵△ABE≌△BCF,
∴S△ABE=S△BFC,
∴S△ABE﹣S△BEG=S△BFC﹣S△BEG,
∴S四邊形CEGF=S△ABG,
故④正確.
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,E點是正方形ABCD的邊BC上一點,AB=12,BE=5,△ABE逆時針旋轉(zhuǎn)后能夠與△ADF重合.
(1)旋轉(zhuǎn)中心是 ,旋轉(zhuǎn)角為 度;
(2)△AEF是 三角形;
(3)求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店購進一批單價為8元的商品,如果按每件10元出售,那么每天可銷售100件.經(jīng)過調(diào)查發(fā)現(xiàn),這種商品的銷售單價每提高1元,其銷售量相應(yīng)減少20件.設(shè)這種商品的銷售單提高元.
(1)現(xiàn)每天的銷售量為 件,現(xiàn)每件的利潤為 元.
(2)求這種商品的銷售單價提高多少元時,才能使每天所獲利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠ACB=45°.點D(與點B、C不重合)為射線BC上一動點,連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.
(1)如果AB=AC.如圖①,且點D在線段BC上運動.試判斷線段CF與BD之間的位置關(guān)系,并證明你的結(jié)論.
(2)如果AB≠AC,如圖②,且點D在線段BC上運動.(1)中結(jié)論是否成立,為什么?
(3)若正方形ADEF的邊DE所在直線與線段CF所在直線相交于點P,設(shè)AC=4,BC=3,CD=x,求線段CP的長.(用含x的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在大家的期盼中,我區(qū)某農(nóng)貿(mào)市場于2009年12月9日盛大開業(yè),王阿姨以每斤元的價格購進山藥若干斤,然后以每斤元的價格出售,每天可售出斤.通過調(diào)查發(fā)現(xiàn),這種山藥每斤的售價每降低元,每天可多售出斤.為了保證每天至少售出斤,王阿姨決定降價銷售.
(1)若將這種山藥每斤的售價降低元,則每天的銷售量是______斤(用含的代數(shù)式表示);
(2)銷售這種山藥要想每天盈利元,王阿姨需將每斤的售價降低多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是菱形ABCD的對角線BD上一點,連接CP并延長,交AD于點E,交BA的延長線于點F.
(1)求證:△APD≌△CPD;
(2)求證:△APE∽△FPA;
(3)若PE=2,EF=6,求PC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC內(nèi)部,且AD=CD,∠ADC=90°,連接BD,若△BCD的面積為10,則AD的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】荊車中學決定在本校學生中,開展足球、籃球、羽毛球、乒乓球四種活動.為了了解學生對這四種活動的喜愛情況,學校隨機調(diào)查了該校名學生,看他們喜愛哪一種活動(每名學生必選一種且只能從這四種活動中選擇一種),現(xiàn)將調(diào)查的結(jié)果繪制成如下不完整的統(tǒng)計圖.
(1)_____________,_______________;
(2)請補全上圖中的條形圖;
(3)根據(jù)抽樣調(diào)查的結(jié)果,請估算全校1800名學生中,大約有多少人喜愛足球;
(4)在抽查的名學生中,喜愛打乒乓球的有10名同學(其中有4名女生,包括小紅、小梅).現(xiàn)將喜愛打乒乓球的同學平均分成兩組進行訓練,只女生每組分兩人.求小紅、小梅能分在同一組的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com