如圖,已知拋物線y=ax2+bx﹣3與x軸的一個(gè)交點(diǎn)為A(﹣1,0),另一個(gè)交點(diǎn)為B,與y軸的交點(diǎn)為C,其頂點(diǎn)為D,對(duì)稱軸為直線x=1.

(1)求拋物線的解析式;

(2)已知點(diǎn)M為y軸上的一個(gè)動(dòng)點(diǎn),當(dāng)△ACM是以AC為一腰的等腰三角形時(shí),求點(diǎn)M的坐標(biāo).

 


【考點(diǎn)】拋物線與x軸的交點(diǎn);二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征;待定系數(shù)法求二次函數(shù)解析式.

【專題】計(jì)算題.

【分析】(1)利用對(duì)稱性可得B(3,0),則利用交點(diǎn)式得拋物線解析式為y=a(x+1)(x﹣3)=ax2﹣2ax﹣3a,所以﹣3a=3,解得a=1,于是得到拋物線解析式為y=x2﹣2x﹣3;

(2)分類討論:當(dāng)AC=AM時(shí),易得點(diǎn)M1(0,3),如圖;②當(dāng)CM=CA時(shí),先計(jì)算出AC=,再以C點(diǎn)為圓心,CA為半徑畫弧交y軸于M2,M3,如圖,易得M2(0,﹣1),M3(0,﹣﹣3).

【解答】解:(1)∵點(diǎn)A(﹣1,0)和點(diǎn)B關(guān)于直線x=1對(duì)稱,

∴B(3,0),

∴拋物線解析式為y=a(x+1)(x﹣3)=ax2﹣2ax﹣3a,

∴﹣3a=3,解得a=1,

∴拋物線解析式為y=x2﹣2x﹣3;

(2)當(dāng)AC=AM時(shí),點(diǎn)M1與點(diǎn)C關(guān)于x軸對(duì)稱,則M1(0,3),如圖;

②當(dāng)CM=CA時(shí),AC==

以C點(diǎn)為圓心,CA為半徑畫弧交y軸于M2,M3,如圖,則OM2=﹣1,OM3=OC+CM3=3+,則M2(0,﹣1),M3(0,﹣﹣3).

綜上所述,滿足條件的點(diǎn)M的坐標(biāo)為(0,3),(0,﹣1),(0,﹣﹣3).

【點(diǎn)評(píng)】本題考查了拋物線與x軸的交點(diǎn):把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點(diǎn)坐標(biāo)問題轉(zhuǎn)化為解關(guān)于x的一元二次方程.解決(2)小題的關(guān)鍵是利用等腰三角形的性質(zhì)畫出點(diǎn)M的坐標(biāo).

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


某商店把一商品按標(biāo)價(jià)的九折出售(即優(yōu)惠10%),仍可獲利20%,若該商品的標(biāo)價(jià)為每件28元,則該商品的進(jìn)價(jià)為(  )

A.21元 B.19.8元   C.22.4元   D.25.2元

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,已知數(shù)軸上點(diǎn)A表示的為8,B是數(shù)軸上一點(diǎn),且AB=14,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒5個(gè)單位長度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.

(1)寫出數(shù)軸上點(diǎn)B表示的數(shù)      ,點(diǎn)P表示的數(shù)      (用含t的代數(shù)式表示);

(2)動(dòng)點(diǎn)H從點(diǎn)B出發(fā),以每秒3個(gè)單位長度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),若點(diǎn)P、H同時(shí)出發(fā),問點(diǎn)P運(yùn)動(dòng)多少秒時(shí)追上點(diǎn)H?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,把△ABC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)35°,得到△A′B′C,A′B′交AC于點(diǎn)D.若∠A′DC=90°,則∠A=      

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


在某電視臺(tái)的一檔選秀節(jié)目中,有三位評(píng)委,每位評(píng)委在選手完成才藝表演后,出示“通過”(用√表示)或“淘汰”(用×表示)的評(píng)定結(jié)果,節(jié)目組規(guī)定:每位選手至少獲得兩位評(píng)委的“通過”才能晉級(jí)

(1)請(qǐng)用樹形圖列舉出選手A獲得三位評(píng)委評(píng)定的各種可能的結(jié)果;

(2)求選手A晉級(jí)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,如果正方形ABCD旋轉(zhuǎn)后能與正方形CDEF重合,那么圖形所在平面內(nèi),可作為旋轉(zhuǎn)中心的點(diǎn)個(gè)數(shù)( 。

A.1個(gè)  B.2個(gè)  C.3個(gè)  D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,△ABC中,D、E是BC邊上的點(diǎn),BD:DE:EC=3:2:1,M在AC邊上,CM:MA=1:2,BM交AD,AE于H,G,則BH:HG:GM等于( 。

A.3:2:1  B.5:3:1  C.25:12:5    D.51:24:10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在⊙O中,弦AC∥半徑OB,∠BOC=50°,則∠OAB的度數(shù)為( 。

A.25°   B.50°    C.60°   D.30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在邊長為6的正方形ABCD中,E是邊CD的中點(diǎn),將△ADE沿AE對(duì)折至△AFE,延長交BC于點(diǎn)G.連接AG.求證:△ABG≌△AFG.

查看答案和解析>>

同步練習(xí)冊(cè)答案