【題目】如圖,已知C為線段AB上的一點,△ACM和△CBN都是等邊三角形,AN和CM相交于F點,BM和CN交于E點.求證:△CEF是等邊三角形.
【答案】見解析
【解析】
由等邊三角形的性質(zhì)可得AC=CM,BC=CN,再利用角的和差可得到∠ACN=∠MCB,可證明△ACN≌△MCB,可得∠ENC=∠FBC,由條件可得∠ECF=60°,可證明△CEN≌△CFB,可得CE=CF,可知△CEF為等邊三角形.
證明:∵△ACM和△CBN是等邊三角形,
∴AC=MC,BC=CN,∠MCA=∠NCB=60°,
∴∠ACN=∠MCB=120°,
在△ACN和△MCB中,
,
∴△ACN≌△MCB(SAS),
∴∠ANC=∠MBC,
∵△ACM和△CBN是等邊三角形,
∴∠MCA=∠NCB=60°,
∴∠ECF=180°﹣60°﹣60°=60°,
在△CFN和△CEB中,
,
∴△CFN≌△CEB(ASA),
∴CE=CF,
∵∠ECF=60°,
∴△CEF為等邊三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將命題“在同圓中,相等的圓心角所對的弧相等,所對的弦也相等”改寫成“已知……求證……”的形式,下列正確的是( )
A.已知:在⊙O中,∠AOB=∠COD,弧AB=弧CD.求證:AB=CD
B.已知:在⊙O中,∠AOB=∠COD,弧AB=弧BC.求證:AD=BC
C.已知:在⊙O中,∠AOB=∠COD.求證:弧AD=弧BC,AD=BC
D.已知:在⊙O中,∠AOB=∠COD.求證:弧AB=弧CD,AB=CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)和一次函數(shù)的圖象相交于第一象限內(nèi)的點A,且點A的橫坐標為1.過點A作AB⊥x軸于點B,△AOB的面積為1.
(1)求反比例函數(shù)和一次函數(shù)的解析式.
(2)若一次函數(shù)的圖象與x軸相交于點C,求∠ACO的度數(shù).
(3)結(jié)合圖象直接寫出:當>>0時,x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+4x+c(a≠0)與反比例函數(shù)y=的圖象相交于點B,且點B的橫坐標為5,拋物線與y軸交于點C(0,6),A是拋物線的頂點,P和Q分別是x軸和y軸上的兩個動點,則AQ+QP+PB的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一次函數(shù)y=mx+n和二次函數(shù)y=mx2+nx+1,其中m≠0,
(1)若二次函數(shù)y=mx2+nx+1經(jīng)過點(2,0),(3,1),試分別求出兩個函數(shù)的解析式.
(2)若一次函數(shù)y=mx+n經(jīng)過點(2,0),且圖象經(jīng)過第一、三象限.二次函數(shù)y=mx2+nx+1經(jīng)過點(a,y1)和(a+1,y2),且y1>y2,請求出a的取值范圍.
(3)若二次函數(shù)y=mx2+nx+1的頂點坐標為A(h,k)(h≠0),同時二次函數(shù)y=x2+x+1也經(jīng)過A點,已知﹣1<h<1,請求出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,一臺燈放置在水平桌面上,底座AB與桌面垂直,底座高AB=5cm,連桿BC=CD=20cm,BC,CD與AB始終在同一平面內(nèi).
(1)如圖②,轉(zhuǎn)動連桿BC,CD,使∠BCD成平角,∠ABC=143°,求連桿端點D離桌面l的高度DE.
(2)將圖②中的連桿CD再繞點C逆時針旋轉(zhuǎn)16°,如圖③,此時連桿端點D離桌面l的高度減小了 cm.
(參考數(shù)據(jù):sin37°=0.6,cos37°=0.8,tan37°=0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在玩轉(zhuǎn)盤游戲時,把兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤A、B分成4等份、3等份的扇形區(qū)域,并在每一小區(qū)域內(nèi)標上數(shù)字(如圖所示),指針的位置固定.游戲規(guī)則:同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當轉(zhuǎn)盤停止后,若指針所指兩個區(qū)域的數(shù)字之和為3的倍數(shù),甲勝;若指針所指兩個區(qū)域的數(shù)字之和為4的倍數(shù)時,乙勝.如果指針落在分割線上,則需要重新轉(zhuǎn)動轉(zhuǎn)盤.
(1)試用列表或畫樹形圖的方法,求甲獲勝的概率;
(2)請問這個游戲規(guī)則對甲、乙雙方公平嗎?試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,點P由點A出發(fā)沿AB方向向終點B勻速移動,速度為1cm/s,點Q由點B出發(fā)沿BC方向向終點C勻速移動,速度為2cm/s.如果動點P,Q同時從A,B出發(fā),當P或Q到達終點時運動停止.幾秒后,以Q,B,P為頂點的三角形與△ABC相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,園林小組的同學(xué)用一段長16米的籬笆圍成一個一邊靠墻的矩形菜園ABCD,墻的長度為9米,設(shè)AB的長為x米,BC的長為y米.
(1)①寫出y與x的函數(shù)關(guān)系是: ;
②自變量x的取值范圍是 ;
(2)園林小組的同學(xué)計劃使矩形菜園的面積為30平方米,試求此時邊AB的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com