【題目】如圖,在□ABCD中,AD是⊙O的弦,BC是⊙O的切線,切點(diǎn)為B.
(1)求證:;
(2)若AB=5,AD=8,求⊙O的半徑.
【答案】(1)證明見解析;(2)⊙O的半徑為
【解析】
(1) 連接OB,根據(jù)題意求證OB⊥AD,利用垂徑定理求證;
(2) 根據(jù)垂徑定理和勾股定理求解.
解:(1)
連接OB,交AD于點(diǎn)E.
∵BC是⊙O的切線,切點(diǎn)為B,
∴OB⊥BC.
∴∠OBC=90°
∵ 四邊形ABCD是平行四邊形
∴AD// BC
∴∠OED=∠OBC =90°
∴ OE⊥AD
又 ∵ OE過圓心O
∴
(2)∵ OE⊥AD ,OE過圓心O
∴ AE=AD=4
在Rt△ABE中,∠AEB=90°,
BE==3,
設(shè)⊙O的半徑為r,則OE=r-3
在Rt△ABE中,∠OEA=90°,
OE2+AE2 = OA2
即(r-3)2+42= r2 ∴r=
∴⊙O的半徑為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了預(yù)防流感,某學(xué)校在休息天用藥熏消毒法對(duì)教室進(jìn)行消毒.已知藥物釋效過程中,室內(nèi)每立方米空氣中的含藥量y(毫克)與時(shí)間x(分鐘)成正比例;藥物釋放完畢后,y與x成反比例,如圖所示.根據(jù)圖中提供的信息,解答下列問題:
(1)寫出從藥物釋放開始,y與x之間的兩個(gè)函數(shù)關(guān)系式及相應(yīng)的自變量取值范圍;
(2)據(jù)測(cè)定,當(dāng)空氣中每立方米的含藥量降低到0.45毫克以下時(shí),學(xué)生方可進(jìn)入教室,那么從藥物釋放開始,至少需要經(jīng)過多少小時(shí)后,學(xué)生才能進(jìn)入教室?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小區(qū)為了促進(jìn)生活垃圾的分類處理,將生活垃圾分為廚余、可回收和其他三類,分別記為a,b,c,并且設(shè)置了相應(yīng)的垃圾箱,“廚余垃圾”箱、“可回收物”箱和“其他垃圾”箱,分別記為A,B,C.
(1)若小明將一袋分好類的生活垃圾隨機(jī)投入一類垃圾箱,請(qǐng)畫樹狀圖或列表求垃圾投放正確的概率;
(2)為調(diào)查居民生活垃圾分類投放情況,現(xiàn)隨機(jī)抽取了該小區(qū)三類垃圾箱中總共100噸生活垃圾,數(shù)據(jù)統(tǒng)計(jì)如下表(單位:噸):
試估計(jì)該小區(qū)居民“廚余垃圾”投放正確的概率約是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在2019年10月1日的建國(guó)70周年慶典上,有多國(guó)領(lǐng)導(dǎo)人出席觀看了我國(guó)盛大的閱兵儀式.為表示友好,我國(guó)政府選擇將刺繡和陶瓷兩類工藝品作為國(guó)禮贈(zèng)送給所有的來賓.甲,乙兩個(gè)工廠分別承接了制作,兩種刺繡與種陶瓷的任務(wù).甲工廠安排100名工人制作刺繡,每人只能制作其中一種刺繡,乙工廠安排50名工人制作種陶瓷.的人均制作數(shù)量比的人均制作數(shù)量少3件,的人均制作量比的人均制作量少20%.若本次贈(zèng)送的國(guó)禮(,,三樣禮品)的人均制作數(shù)量比的人均制作數(shù)量少30%,且的人均制作數(shù)量為偶數(shù)件,則本次贈(zèng)送的國(guó)禮共制作了_________件.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線與軸交于兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),與軸交于點(diǎn),點(diǎn)拋物線的頂點(diǎn).
(1)求直線的解析式;
(2)拋物線對(duì)稱軸交軸于點(diǎn),為直線上方的拋物線上一動(dòng)點(diǎn),過點(diǎn)作于點(diǎn),當(dāng)線段的長(zhǎng)最大時(shí),連接,過點(diǎn)作射線,且,點(diǎn)為射線上一動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)重合),連接,為中點(diǎn),連接,求的最小值;
(3)如圖2,平移拋物線,使拋物線的頂點(diǎn)在射線上移動(dòng),點(diǎn),平移后的對(duì)應(yīng)點(diǎn)分別為點(diǎn),,軸上有一動(dòng)點(diǎn),連接,,是否能為等腰直角三角形?若能,請(qǐng)求出所有符合條件的點(diǎn)的坐標(biāo);若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
(已有經(jīng)驗(yàn))
我們已經(jīng)研究過作一個(gè)圓經(jīng)過兩個(gè)已知點(diǎn),也研究過作一個(gè)圓與已知角的兩條邊都相切,尺規(guī)作圖如圖所示:
(遷移經(jīng)驗(yàn))
(1)如圖①,已知點(diǎn)M和直線l,用兩種不同的方法完成尺規(guī)作圖:求作⊙O,使⊙O過M點(diǎn),且與直線l相切.(每種方法作出一個(gè)圓即可,保留作圖痕跡,不寫作法)
(問題解決)
如圖②,在Rt△ABC中,∠C=90°,AC=8,BC=6.
(2)已知⊙O經(jīng)過點(diǎn)C,且與直線AB相切.若圓心O在△ABC的內(nèi)部,則⊙O半徑r的取值范圍為 .
(3)點(diǎn)D是邊AB上一點(diǎn),BD=m,請(qǐng)直接寫出邊AC上使得∠BED為直角時(shí)點(diǎn)E的個(gè)數(shù)及相應(yīng)的m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=16cm,BC=6cm,動(dòng)點(diǎn)P、Q分別以3cm/s、2cm/s的速度從點(diǎn)A、C同時(shí)出發(fā),點(diǎn)Q從點(diǎn)C向點(diǎn)D移動(dòng).
(1)若點(diǎn)P從點(diǎn)A移動(dòng)到點(diǎn)B停止,點(diǎn)Q隨點(diǎn)P的停止而停止移動(dòng),點(diǎn)P、Q分別從點(diǎn)A、C同時(shí)出發(fā),問經(jīng)過多長(zhǎng)時(shí)間P、Q兩點(diǎn)之間的距離是10cm?
(2)若點(diǎn)P沿著AB→BC→CD移動(dòng),點(diǎn)P、Q分別從點(diǎn)A、C同時(shí)出發(fā),點(diǎn)Q從點(diǎn)C移動(dòng)到點(diǎn)D停止時(shí),點(diǎn)P隨點(diǎn)Q的停止而停止移動(dòng),試探求經(jīng)過多長(zhǎng)時(shí)間△PBQ的面積為12cm2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在4×4的正方形網(wǎng)格中,△ABC和△A'B'C'的頂點(diǎn)都在邊長(zhǎng)為1的小正方形的格點(diǎn)上.
(1)填空:∠BAC= °,AB= ;
(2)判斷:△ABC和△A'B'C這兩個(gè)三角形相似嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E,F分別是矩形ABCD的邊AD,AB上的點(diǎn),若EF=EC,且EF⊥EC.
(1)求證:AE=DC;
(2)已知DC=,求BE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com