【題目】如圖,一種側(cè)面形狀為矩形的行李箱,箱蓋打開后,蓋子的一端靠在墻上,此時(shí)BC=10cm,箱底端點(diǎn)E與墻角G的距離為65cm,∠DCG=60°.
(1)箱蓋繞點(diǎn)A轉(zhuǎn)過的角度為______,點(diǎn)B到墻面的距離為______cm;
(2)求箱子的寬EF(結(jié)果保留整數(shù),可用科學(xué)計(jì)算器).(參考數(shù)據(jù):=1.41,=1.73)
【答案】(1)150°;5(2)32.4cm
【解析】
(1)如圖,過點(diǎn)B作BH⊥CG于H,過點(diǎn)D作CG的垂線MN交AF于M,交HG于N.利用矩形的性質(zhì)、直角三角形的性質(zhì)以及等角的余角相等得到∠MAD=30°,根據(jù)周角的定義易求箱蓋繞點(diǎn)A轉(zhuǎn)過的角度;通過解直角△BHC來求BH的長度;
(2)通過解直角△AMD得到線段MD的長度,則DN=65-EF-DM,利用解直角△DCN來求CD的長度,即EF的長度即可.
(1)如圖,過點(diǎn)B作BH⊥CG于H,過點(diǎn)D作CG的垂線MN交AF于M,交HG于N.
∵∠DCG=60°,
∴∠CDN=30°.
又∵四邊形ABCD是矩形,
∴∠ADC=∠BCD=90°,
∴∠MAD=∠CDN=30°(同角的余角相等),
∴箱蓋繞點(diǎn)A轉(zhuǎn)過的角度為:360°-90°-30°-90°=150°.
在直角△BCH中,∠BCH=30°,BC=10cm,則BH=BC=5cm.
故答案是:150°;5;
(2)在直角△AMD中,AD=BC=10cm,∠MAD=30°,則MD=ADsin30°=×10=5(cm).
∵∠CDN=30°,
∴cos∠CDN=cos30°=,即
解得EF=32.4.
即箱子的寬EF是32.4cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A是射線y═(x≥0)上一點(diǎn),過點(diǎn)A作AB⊥x軸于點(diǎn)B,以AB為邊在其右側(cè)作正方形ABCD,過點(diǎn)A的雙曲線y=交CD邊于點(diǎn)E,則的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某體育老師統(tǒng)計(jì)了七年級(jí)甲、乙兩個(gè)班女生的身高,并繪制了以下不完整的統(tǒng)計(jì)圖.
請根據(jù)圖中信息,解決下列問題:
(1)兩個(gè)班共有女生多少人?
(2)將頻數(shù)分布直方圖補(bǔ)充完整;
(3)求扇形統(tǒng)計(jì)圖中部分所對(duì)應(yīng)的扇形圓心角度數(shù);
(4)身高在的5人中,甲班有3人,乙班有2人,現(xiàn)從中隨機(jī)抽取兩人補(bǔ)充到學(xué)校國旗隊(duì).請用列表法或畫樹狀圖法,求這兩人來自同一班級(jí)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,DB=6,AD=3,在Rt△PEF中,∠PEF=90°,EF=3,PF=6,△PEF(點(diǎn)F和點(diǎn)A重合)的邊EF和矩形的邊AB在同一直線上.現(xiàn)將Rt△PEF從A以每秒1個(gè)單位的速度向射線AB方向勻速平移,當(dāng)點(diǎn)F與點(diǎn)B重合時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,
解答下列問題:
(1)如圖1,連接PD,填空:∠PFD= ,四邊形PEAD的面積是 ;
(2)如圖2,當(dāng)PF經(jīng)過點(diǎn)D時(shí),求 △PEF運(yùn)動(dòng)時(shí)間t的值;
(3)在運(yùn)動(dòng)的過程中,設(shè)△PEF與△ABD重疊部分面積為S,請求出S與t的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.在△ABC中,∠ACB=60°,AC=1,D是邊AB的中點(diǎn),E是邊BC上一點(diǎn).若DE平分△ABC的周長,則DE的長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點(diǎn)C,D,E三點(diǎn)在同一條直線上,連接BD,BE.以下四個(gè)結(jié)論:
①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),
其中結(jié)論正確的個(gè)數(shù)是
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A、C分別在x、y軸的正半軸上,頂點(diǎn)B的坐標(biāo)為(4,2)點(diǎn)M是邊BC上的一個(gè)動(dòng)點(diǎn)(不與B、C重合),反比例函數(shù) (k>0,x>0)的圖象經(jīng)過點(diǎn)M且與邊AB交于點(diǎn)N,連接MN.
(1)當(dāng)點(diǎn)M是邊BC的中點(diǎn)時(shí),求反比例函數(shù)的表達(dá)式;
(2)在點(diǎn)M的運(yùn)動(dòng)過程中,試證明:是一個(gè)定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,以O為圓心,OA為半徑的圓與BC相切與點(diǎn)B,與OC相交于點(diǎn)D.
(1)求的度數(shù).
(2)如圖,點(diǎn)E在⊙O上,連接CE與⊙O交于點(diǎn)F,若,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AE平分∠DAB,已知CE=6,BE=8,DE=10.
(1)求證:∠BEC=90°;
(2)求cos∠DAE.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com