科目: 來源: 題型:
【題目】小明想知道一堵墻上點A的高度(AO⊥OD),但又沒有直接測量的工具,于是設計了下面的方案,請你先補全方案,再說明理由.
第一步:找一根長度大于OA的直桿,使直桿靠在墻上,且頂端與點A重合,記下直桿與地面的夾角∠ABO;
第二步:使直桿頂端豎直緩慢下滑,直到∠ =∠ .標記此時直桿的底端點D;
第三步:測量 的長度,即為點A的高度.
說明理由:
查看答案和解析>>
科目: 來源: 題型:
【題目】小華與爸爸用一個如圖所示的五等分、可以自由轉動的轉盤來玩游戲;將轉盤隨機轉一次,指針指向的數字如果是奇數.爸爸獲勝,如果是偶數,則小華獲勝(指針指到線上則重轉)
(1)轉完轉盤后指針指向數字2的概率是多少?
(2)這個游戲公平嗎?請你說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,AB∥CD,∠B=∠D.點EF分別在AB、CD上.連接AC,分別交DE、BF于G、H.求證:∠1+∠2=180°
證明:∵AB∥CD,
∴∠B=_____._____
又∵∠B=∠D,
∴_____=_____.(等量代換)
∴_____∥_____._____
∴∠l+∠2=180°._____
查看答案和解析>>
科目: 來源: 題型:
【題目】計算與化簡
(1)(﹣2x)3x6÷(﹣3x3)2
(2)5m(m﹣n)﹣(5m+n)(m﹣n)
(3)利用簡便方法計算:20202﹣2019×2021
(4)先化簡,再求值:[(a+b)2﹣(a﹣b)(a+b)]÷(2b),其中a=﹣,b=﹣1.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,等邊△ABC中,BD⊥AC于點D,AD=3.5cm,點P、Q分別為AB、AD上的兩個定點且BP=AQ=2cm,若在BD上有一動點E使PE+QE最短,則PE+QE的最小值為_____cm
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=(x+2)(x﹣8)與x軸交于A,B兩點,與y軸交于點C,頂點為M,以AB為直徑作⊙D.下列結論:①拋物線的對稱軸是直線x=3;②⊙D的面積為16π;③拋物線上存在點E,使四邊形ACED為平行四邊形;④直線CM與⊙D相切.其中正確結論的個數是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,已知∠B=∠C=90°,AM平分∠DAB,DM平分∠ADC.
(1)求證:M是BC的中點.
(2) 求證:AD=AB+CD.
(3)S△AMD=______S四邊形ABCD.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在菱形ABCD中,AC=6,BD=6,E是BC邊的中點,P,M分別是AC,AB上的動點,連接PE,PM,則PE+PM的最小值是( 。
A. 6 B. 3 C. 2 D. 4.5
查看答案和解析>>
科目: 來源: 題型:
【題目】根據下面的研究彈簧長度與所掛物體重量關系的實驗表格,不掛物體時,彈簧原長_____cm;當所掛物體重量為3.5kg時,彈簧比原來伸長_____cm.
所掛物體重量x(kg) | 1 | 3 | 4 | 5 |
彈簧長度y(cm) | 10 | 14 | 16 | 18 |
查看答案和解析>>
科目: 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=45°.若AD平分∠BAC交BC于D,BE⊥AC于E,且交A于O,連接OC.則下列說法中正確的是( 。AD⊥BC;②OC平分BE;③OE=CE;④△ACD≌△BCE;⑤△OCE的周長=AC的長度
A.①②③B.②④⑤C.①③⑤D.①③④⑤
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com