科目: 來源: 題型:
【題目】鹽阜人民商場(chǎng)經(jīng)營(yíng)某種品牌的服裝,購(gòu)進(jìn)時(shí)的單價(jià)是元,根據(jù)市場(chǎng)調(diào)查:在一段時(shí)間內(nèi),銷售單價(jià)是元時(shí),銷售量是件,而銷售單價(jià)每漲元,就會(huì)少售出件服裝.
設(shè)該種品牌服裝的銷售單價(jià)為元,銷售量為件,請(qǐng)寫出與之間的函數(shù)關(guān)系式;
若商場(chǎng)獲得了元銷售利潤(rùn),該服裝銷售單價(jià)應(yīng)定為多少元?
在問條件下,若該商場(chǎng)要完成不少于件的銷售任務(wù),求商場(chǎng)銷售該品牌服裝獲得的最大利潤(rùn)是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線的頂點(diǎn)為,與軸相交于、兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,我們稱以為頂點(diǎn)且過點(diǎn),對(duì)稱軸與軸平行的拋物線為拋物線的“夢(mèng)之星”拋物線,直線為拋物線的“夢(mèng)之星”直線.若一條拋物線的“夢(mèng)之星”拋物線和“夢(mèng)之星”直線分別是和,則這條拋物線的解析式為________.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,AB=BC,∠B=60°,E是BC邊上一點(diǎn).
(1)如圖1,若E是BC的中點(diǎn),∠AED=60°,求證:CE=CD;
(2)如圖2,若∠EAD=60°,求證:△AED是等邊三角形.
查看答案和解析>>
科目: 來源: 題型:
【題目】小明從如圖所示的二次函數(shù)的圖象中,觀察得出了下面五條信息:
①,②,③,④,⑤,
你認(rèn)為其中正確信息的個(gè)數(shù)有( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC,以AB為直角邊作等腰直角三角形ABD,與BC邊交于點(diǎn)E,
(1)若∠ACE=18°,則∠ECD=
(2)探索:∠ACE與∠ACD有怎樣的數(shù)量關(guān)系?猜想并證明.
(3)如圖2,作△ABC的高AF并延長(zhǎng),交BD于點(diǎn)G,交CD延長(zhǎng)線于點(diǎn)H,求證:CH2+DH2=2AD2.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:把Rt△ABC和Rt△DEF按如圖1擺放(點(diǎn)C與點(diǎn)E重合),點(diǎn)B、C(E)、F在同一條直線上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm,如圖2,△DEF從圖1的位置出發(fā),以1cm/s的速度沿CB向△ABC勻速移動(dòng),在△DEF移動(dòng)的同時(shí),點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),以2cm/s的速度沿BA向點(diǎn)A勻速移動(dòng).當(dāng)△DEF的頂點(diǎn)D移動(dòng)到AC邊上時(shí),△DEF停止移動(dòng),點(diǎn)P也隨之停止移動(dòng).DE與AC相交于點(diǎn)Q,連接PQ,設(shè)移動(dòng)時(shí)間為t(s)(0<t<4.5).解答下列問題:
(1)用含t的代數(shù)式表示線段AP= ;
(2)當(dāng)t為何值時(shí),點(diǎn)E在∠A的平分線上?
(3)當(dāng)t為何值時(shí),點(diǎn)A在線段PQ的垂直平分線上?
(4)連接PE,當(dāng)t=1(s)時(shí),求四邊形APEC的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】若所求的二次函數(shù)圖象與拋物線有相同的頂點(diǎn),并且在對(duì)稱軸的左側(cè),隨的增大而增大,在對(duì)稱軸的右側(cè),隨的增大而減小,則所求二次函數(shù)的解析式為( )
A.
B.
C.
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】某種商品的成本是元,試銷階段每件商品的售價(jià)(元)與產(chǎn)品的銷售量(件)滿足當(dāng)時(shí),,當(dāng)時(shí),,且是的一次函數(shù),為了獲得最大利潤(rùn)(元),每件產(chǎn)品的銷售價(jià)應(yīng)定為( )
A. 160元 B. 180元 C. 140元 D. 200元
查看答案和解析>>
科目: 來源: 題型:
【題目】我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中有這樣一個(gè)問題:今有池方一丈,葭生其中央,出水一尺.引葭赴岸,適于岸齊,問水深、葭長(zhǎng)各幾何?”這道題的意思是說:“有一個(gè)邊長(zhǎng)為10尺的正方形水池,在水池的正中央長(zhǎng)著一根蘆葦,蘆葦露出水面1尺,若將蘆葦拉到水池一邊的中點(diǎn)處,蘆葦?shù)捻敹饲『玫竭_(dá)池邊的水面,問水的深度與這根蘆葦?shù)拈L(zhǎng)度分別是多少?若設(shè)水的深度為x尺,則可以得到方程_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線在平面直角坐標(biāo)系中的位置如圖所示,則下列結(jié)論:
①;②;③;④.
其中,正確的結(jié)論的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com