【題目】設(shè)為實(shí)數(shù),已知,

1)若函數(shù),求的值;

2)當(dāng)時(shí),求證:函數(shù)上是單調(diào)遞增函數(shù);

3)若對(duì)于一切,不等式恒成立,求的取值范圍.

【答案】1;(2)證明過程見解析;(3.

【解析】

1)直接把代入函數(shù)解析式,得到方程,求出的值;

2)求出函數(shù)的解析式,用函數(shù)單調(diào)性的定義進(jìn)行證明即可;

3)分類討論,把函數(shù)的解析式,轉(zhuǎn)化為二次函數(shù)解析式、分式類型函數(shù)解析式形式,利用它們的單調(diào)性求出的取值范圍.

1;

2,當(dāng)時(shí),解析式可化簡(jiǎn)為:

,設(shè)上任意兩個(gè)不相等的實(shí)數(shù),則有,

因?yàn)?/span>,,所以,因此有

,所以函數(shù)上的遞增函數(shù);

3)當(dāng)時(shí),而,所以,因?yàn)?/span>,所以有

恒成立,設(shè),對(duì)稱軸為:,故上是增函數(shù),要想(*)恒成立,只需

該不等式恒成立,故

當(dāng)時(shí),, 此時(shí)函數(shù)是單調(diào)遞增函數(shù),要想上恒成立,只需這與矛盾,故不成立;

當(dāng)時(shí),

當(dāng)時(shí),函數(shù)是單調(diào)遞增函數(shù),當(dāng)時(shí),由(2)可知函數(shù)是單調(diào)遞增函數(shù),所以函數(shù)時(shí),最小值為

要想上恒成立,只需,而,所以,綜上所述:的取值范圍為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

)求函數(shù)的單調(diào)區(qū)間;

)若函數(shù)上是減函數(shù),求實(shí)數(shù)a的最小值;

)若,使)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為紀(jì)念重慶黑山谷晉升國(guó)家5A級(jí)景區(qū)五周年,特發(fā)行黑山谷紀(jì)念郵票,從2017年11月1日起開始上市.通過市場(chǎng)調(diào)查,得到該紀(jì)念郵票在一周內(nèi)每1張的市場(chǎng)價(jià)y(單位:元)與上市時(shí)間x(單位:天)的數(shù)據(jù)如下:

上市時(shí)間x天

1

2

6

市場(chǎng)價(jià)y元

5

2

10

(Ⅰ)分析上表數(shù)據(jù),說明黑山谷紀(jì)念郵票的市場(chǎng)價(jià)y(單位:元)與上市時(shí)間x(單位:天)的變化關(guān)系,并判斷y與x滿足下列哪種函數(shù)關(guān)系,①一次函數(shù);②二次函數(shù);③對(duì)數(shù)函數(shù),并求出函數(shù)的解析式;

(Ⅱ)利用你選取的函數(shù),求黑山谷紀(jì)念郵票市場(chǎng)價(jià)最低時(shí)的上市天數(shù)及最低的價(jià)格.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為: 為參數(shù), ),將曲線經(jīng)過伸縮變換: 得到曲線.

(1)以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立坐標(biāo)系,求的極坐標(biāo)方程;

(2)若直線為參數(shù))與相交于兩點(diǎn),且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有甲、乙兩種商品,經(jīng)營(yíng)銷售這兩種商品所能獲得的利潤(rùn)依次是P(萬(wàn)元)和Q(萬(wàn)元),它們與投入資金x(萬(wàn)元)的關(guān)系有經(jīng)驗(yàn)公式:P=,Q= .今有3萬(wàn)元資金投入經(jīng)營(yíng)甲、乙兩種商品,為獲得最大利潤(rùn),對(duì)甲、乙兩種商品的資金投入分別應(yīng)為多少?能獲得的最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

討論函數(shù)的單調(diào)性;

當(dāng)時(shí),求函數(shù)在區(qū)間上的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市環(huán)保部門對(duì)該市市民進(jìn)行了一次垃圾分類知識(shí)的網(wǎng)絡(luò)問卷調(diào)查,每位市民僅有一次參加機(jī)會(huì),通過隨機(jī)抽樣,得到參與問卷調(diào)查的100人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如表所示:

組別

2

3

5

15

18

12

0

5

10

10

7

13

(1)若規(guī)定問卷得分不低于70分的市民稱為“環(huán)保關(guān)注者”,請(qǐng)完成答題卡中的列聯(lián)表,并判斷能否在犯錯(cuò)誤概率不超過0.05的前提下,認(rèn)為是否為“環(huán)保關(guān)注者”與性別有關(guān)?

(2)若問卷得分不低于80分的人稱為“環(huán)保達(dá)人”.視頻率為概率.

①在我市所有“環(huán)保達(dá)人”中,隨機(jī)抽取3人,求抽取的3人中,既有男“環(huán)保達(dá)人”又有女“環(huán)保達(dá)人”的概率;

②為了鼓勵(lì)市民關(guān)注環(huán)保,針對(duì)此次的調(diào)查制定了如下獎(jiǎng)勵(lì)方案:“環(huán)保達(dá)人”獲得兩次抽獎(jiǎng)活動(dòng);其他參與的市民獲得一次抽獎(jiǎng)活動(dòng).每次抽獎(jiǎng)獲得紅包的金額和對(duì)應(yīng)的概率.如下表:

紅包金額(單位:元)

10

20

概率

現(xiàn)某市民要參加此次問卷調(diào)查,記(單位:元)為該市民參加間卷調(diào)查獲得的紅包金額,求的分布列及數(shù)學(xué)期望.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合,如果對(duì)于的每一個(gè)含有個(gè)元素的子集,中必有個(gè)元素的和等于,稱正整數(shù)為集合的一個(gè)相關(guān)數(shù)

1)當(dāng)時(shí),判斷是否為集合相關(guān)數(shù),說明理由;

2)若為集合相關(guān)數(shù),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),其中.

(Ⅰ)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

(Ⅱ)若函數(shù)僅在處有極值,求的取值范圍;

(Ⅲ)若對(duì)于任意的,不等式上恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案