已知定義域?yàn)镽的函數(shù)f(x)滿足:
①f(x+y)=f(x)•f(y)對(duì)任何實(shí)數(shù)x、y都成立;
②存在實(shí)數(shù)x1、x2使,f(x1)≠f(x2).
求證:
(1)f(0)=1;
(2)f(x)>0.
考點(diǎn):抽象函數(shù)及其應(yīng)用
專題:證明題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)令x=y=0,求出f(0),注意條件②的運(yùn)用,舍去一個(gè);
(2)將x,y均換成
x
2
,得到f(x)=f2
x
2
)即f(x)≥0,注意運(yùn)用條件②,舍去f(x)=0,即可得證.
解答: 證明:(1)令x=y=0則f(0)=f2(0),
∴f(0)=0或f(0)=1
若f(0)=0則令y=0,即有f(x)=f(x)•f(0)=0對(duì)x∈R均成立,與②矛盾,
故f(0)≠0,
若f(0)=1,則f(x)=f(x)成立,
∴f(0)=1;
(2)將x,y均換成
x
2
,則
f(x)=f2
x
2
)即f(x)≥0,
若f(x)=0這與②矛盾,
∴f(x)>0成立.
點(diǎn)評(píng):本題主要考查解決抽象函數(shù)的常用方法:賦值法和賦式法,正確賦值和賦式是解題的關(guān)鍵,注意條件的充分運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m>0,n>0,
1
m
+
4
n
=1,則(m+1)(n+4)的最小值為(  )
A、49B、7C、36D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)z=m2+5m+6+(m2-2m-15)i.
(Ⅰ)實(shí)數(shù)m取什么數(shù)值時(shí),復(fù)數(shù)z為純虛數(shù);
(Ⅱ)當(dāng)m=-4時(shí),復(fù)數(shù)z0=z+a+(a-5)i(a∈R),求復(fù)數(shù)z0的模的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙、丙三人獨(dú)立破譯一種密碼,他們破譯成功的概率分別為
1
2
,
3
5
3
4
求:
(1)三人同時(shí)破譯,恰有一人破譯成功的概率;
(2)三人同時(shí)破譯,能破譯成功的概率;
(3)要使破譯成功的概率不小于95%,至少需要丙這樣的人多少個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

南方A市欲將一批容易變質(zhì)的水果運(yùn)往B市,現(xiàn)在可以在飛機(jī)、火車和汽車這三種運(yùn)輸方式中選擇一種,三種運(yùn)輸方式的參考數(shù)據(jù)如表所示:
運(yùn)輸工具 途中速度
(千米/時(shí))
 途中費(fèi)用
(元/千米)
裝卸費(fèi)用(元)  裝卸時(shí)間
(小時(shí))
運(yùn)輸裝卸損耗費(fèi)用(元/小時(shí))
 飛機(jī)  200  15  1000  2 200
 火車  100  4  2000  4 200
 汽車  50  8  700  3 200
(1)設(shè)A、B兩市之間的距離為x千米,用y1、y2、y3分別表示使用飛機(jī)、火車、汽車運(yùn)輸時(shí)的總支出費(fèi)用(包括損耗),求出y1、y2、y3與小x間的函數(shù)關(guān)系式.
(2)應(yīng)采用哪種運(yùn)輸方式,才使運(yùn)輸時(shí)的總支出費(fèi)用最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(x+
3
3x
n的展開式中,各項(xiàng)系數(shù)的和與其二項(xiàng)式系數(shù)的和之比為64.
(1)求含x2的項(xiàng)的系數(shù);
(2)求展開式中所有的有理項(xiàng);
(3)求展開式中系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(2,3),B(-2,-1),直線MN過(guò)原點(diǎn),其中點(diǎn)M在第一象限,MN∥AB,且|MN|=2
2
,直線AM和直線BN的交點(diǎn)C在y軸上.
(Ⅰ)求直線MN的方程;
(Ⅱ)求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式1≤2x<16的解集為A,不等式lg(x-1)<1解集為B.
(Ⅰ)求A∪B;
(Ⅱ)若集合M={x|a-1<x<a+1},且(A∩B)∩M=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從某節(jié)能燈生產(chǎn)線上隨機(jī)抽取100件產(chǎn)品進(jìn)行壽命試驗(yàn),按連續(xù)使用時(shí)間(單位:天)共分5組,得到頻率分布直方圖如圖.
(1)請(qǐng)根據(jù)頻率分布直方圖,估算樣本數(shù)據(jù)的眾數(shù)和中位數(shù)(中位數(shù)精確到0.01);
(2)若將頻率視為概率,從該生產(chǎn)線所生產(chǎn)的產(chǎn)品(數(shù)量很多)中隨機(jī)抽取3個(gè),用ξ表示連續(xù)使用壽命高于350天的產(chǎn)品件數(shù),求ξ的分布列和期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案