(本小題滿分12分) 已知橢圓E:=1(a>b>o)的離心率e=,且經(jīng)過點(diǎn)(,1),O為坐標(biāo)原點(diǎn)。

(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
。á颍﹫AO是以橢圓E的長(zhǎng)軸為直徑的圓,M是直線x=-4在x軸上方的一點(diǎn),過M作圓O的兩條切線,切點(diǎn)分別為P、Q,當(dāng)∠PMQ=60°時(shí),求直線PQ的方程.

(1);(2)x-y+2="0."

解析試題分析:(Ⅰ)根據(jù)橢圓E:橢圓E:=1(a>b>o)的離心率e=,可得a2=2b2,利用橢圓E:=1經(jīng)過點(diǎn)(,1)我們有 ,從而可求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)連接OM,OP,OQ,設(shè)M(-4,m),由圓的切線性質(zhì)及∠PMQ=60°,可知△OPM為直角三角形且∠OMP=30°,從而可求M(-4,4),進(jìn)而以O(shè)M為直徑的圓K的方程為(x+2)2+(y-2)2=8與圓O:x2+y2=8聯(lián)立,兩式相減可得直線PQ的方程.
解:(1)橢圓的標(biāo)準(zhǔn)方程為:   ﹍﹍﹍﹍﹍﹍﹍4分
(2)連接QM,OP,OQ,PQ和MO交于點(diǎn)A,
有題意可得M(-4,m),∵∠PMQ=600
∴∠OMP=300,∵,
∵m>0,∴m=4,∴M(-4,4)            ﹍﹍﹍﹍﹍﹍﹍7分
∴直線OM的斜率,有MP=MQ,OP=OQ可知OM⊥PQ,
,設(shè)直線PQ的方程為y=x+n     ﹍﹍﹍﹍﹍﹍﹍9分
∵∠OMP=300,∴∠POM=600,∴∠OPA=300,
,即O到直線PQ的距離為,  ﹍﹍﹍﹍10分
(負(fù)數(shù)舍去),∴PQ的方程為x-y+2=0. ﹍﹍﹍﹍12分
考點(diǎn):本題以橢圓的性質(zhì)為載體,考查橢圓的標(biāo)準(zhǔn)方程,考查圓與橢圓的綜合。 是一道綜合試題。
點(diǎn)評(píng):解題的關(guān)鍵是確定M的坐標(biāo),進(jìn)而確定以O(shè)M為直徑的圓K的方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題12分) 將圓O: 上各點(diǎn)的縱坐標(biāo)變?yōu)樵瓉淼囊话?(橫坐標(biāo)不變), 得到曲線、拋物線的焦點(diǎn)是直線y=x-1與x軸的交點(diǎn).
(1)求,的標(biāo)準(zhǔn)方程;
(2)請(qǐng)問是否存在直線滿足條件:① 過的焦點(diǎn);②與交于不同兩
點(diǎn),,且滿足?若存在,求出直線的方程; 若不存在,說明
理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,且經(jīng)過點(diǎn),直線交橢圓于不同的兩點(diǎn).
(1)求橢圓的方程;
(2)求的取值范圍;
(3)若直線不過點(diǎn),求證:直線軸圍成一個(gè)等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的一個(gè)焦點(diǎn)是,且截直線所得弦長(zhǎng)為,求該橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)如圖,橢圓的離心率為,直線所圍成的矩形ABCD的面積為8.
 
(Ⅰ)求橢圓M的標(biāo)準(zhǔn)方程;
(Ⅱ) 設(shè)直線與橢圓M有兩個(gè)不同的交點(diǎn)與矩形ABCD有兩個(gè)不同的交點(diǎn).求的最大值及取得最大值時(shí)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分13分)已知雙曲線的右焦點(diǎn)與拋物線的焦點(diǎn)重合,求該雙曲線的焦點(diǎn)到其漸近線的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率,A,B分別為橢圓的長(zhǎng)軸和短軸的端點(diǎn),M為AB的中點(diǎn),O為坐標(biāo)原點(diǎn),且.
(1)求橢圓的方程;
(2)過(-1,0)的直線交橢圓于P,Q兩點(diǎn),求△POQ面積最大時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分) 求滿足下列條件的橢圓的標(biāo)準(zhǔn)方程.
(1)焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過兩點(diǎn);
(2)經(jīng)過點(diǎn)(2,-3)且與橢圓具有共同的焦點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:
(1)若橢圓的長(zhǎng)軸長(zhǎng)為4,離心率為,求橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,設(shè)過定點(diǎn)M(0,2)的直線l與橢圓C交于不同的兩點(diǎn)A、B,
且∠AOB為銳角(其中O為坐標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍;

查看答案和解析>>

同步練習(xí)冊(cè)答案