【題目】(本題滿(mǎn)分12分)已知
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè),若存在使得成立,求的取值范圍。
【答案】(1) 當(dāng),在單調(diào)遞增區(qū)間為;時(shí),的遞增區(qū)間為,遞減區(qū)間為;(2) [0,+∞).
【解析】試題分析:(1)含參討論研究函數(shù)的單調(diào)性;(2)存在使得成立,即求函數(shù)的最大值大于等于零即可,也可以變量分離求最值.
試題解析:
(1) 函數(shù)的定義域?yàn)?/span>
若,恒成立,在上單調(diào)遞增。
若,令,解得,
令,解得
綜上,當(dāng),在單調(diào)遞增區(qū)間為;
時(shí),的遞增區(qū)間為,遞減區(qū)間為。
(2)當(dāng)b=1時(shí),f(x)=ln x-x+a+1(x>0).
原題即為存在x使得ln x-x+a+1≥0,
∴a≥-ln x+x-1,
令g(x)=-ln x+x-1,
則g′(x)=-+1=.令g′(x)=0,解得x=1.
∵當(dāng)0<x<1時(shí),g′(x)<0,∴g(x)為減函數(shù),
當(dāng)x>1時(shí),g′(x)>0,∴g(x)為增函數(shù),
∴g(x)min=g(1)=0.
∴a≥g(1)=0.∴a的取值范圍為[0,+∞).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,為了保護(hù)環(huán)境,實(shí)現(xiàn)城市綠化,某房地產(chǎn)公司要在拆遷地長(zhǎng)方形ABCD處規(guī)劃一塊長(zhǎng)方形地面HPGC,建造住宅小區(qū)公園,但不能越過(guò)文物保護(hù)區(qū)三角形AEF的邊線EF.已知AB=CD=200 m,BC=AD=160 m,AF=40 m,AE=60 m,問(wèn)如何設(shè)計(jì)才能使公園占地面積最大,求出最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓E的右焦點(diǎn)與拋物線的焦點(diǎn)重合,點(diǎn)M在橢圓E上.
(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè),直線與橢圓E交于A,B兩點(diǎn),若直線PA,PB關(guān)于x軸對(duì)稱(chēng),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), ,記
。
(1) 判斷的奇偶性(不用證明)并寫(xiě)出的單調(diào)區(qū)間;
(2)若對(duì)于一切恒成立,求實(shí)數(shù)的取值范圍.
(3)對(duì)任意,都存在,使得, .若,求實(shí)數(shù)的值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】微信紅包是一款可以實(shí)現(xiàn)收發(fā)紅包、查收記錄和提現(xiàn)的手機(jī)應(yīng)用.某網(wǎng)絡(luò)運(yùn)營(yíng)商對(duì)甲、乙兩個(gè)品牌各5種型號(hào)的手機(jī)在相同環(huán)境下?lián)尩降募t包個(gè)數(shù)進(jìn)行統(tǒng)計(jì),得到如下數(shù)據(jù):
手機(jī)品牌 型號(hào) | I | II | III | IV | V |
甲品牌(個(gè)) | 4 | 3 | 8 | 6 | 12 |
乙品牌(乙) | 5 | 7 | 9 | 4 | 3 |
手機(jī)品牌 紅包個(gè)數(shù) | 優(yōu) | 非優(yōu) | 合計(jì) |
甲品牌(個(gè)) | |||
乙品牌(個(gè)) | |||
合計(jì) |
(1)如果搶到紅包個(gè)數(shù)超過(guò)5個(gè)的手機(jī)型號(hào)為“優(yōu)”,否則為“非優(yōu)”,請(qǐng)完成上述2×2列聯(lián)表,據(jù)此判斷是否有85%的把握認(rèn)為搶到的紅包個(gè)數(shù)與手機(jī)品牌有關(guān)?
(2)如果不考慮其他因素,要從甲品牌的5種型號(hào)中選出3種型號(hào)的手機(jī)進(jìn)行大規(guī)模宣傳銷(xiāo)售.
①求在型號(hào)I被選中的條件下,型號(hào)II也被選中的概率;
②以表示選中的手機(jī)型號(hào)中搶到的紅包超過(guò)5個(gè)的型號(hào)種數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.
下面臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式: ,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)慶期間,某旅行社組團(tuán)去風(fēng)景區(qū)旅游,若旅行團(tuán)人數(shù)在 人或 人以下,每人需交費(fèi)用為 元;若旅行團(tuán)人數(shù)多于 人,則給予優(yōu)惠:每多 人,人均費(fèi)用減少 元,直到達(dá)到規(guī)定人數(shù) 人為止.旅行社需支付各種費(fèi)用共計(jì) 元.
Ⅰ 寫(xiě)出每人需交費(fèi)用 關(guān)于人數(shù) 的函數(shù);
Ⅱ 旅行團(tuán)人數(shù)為多少時(shí),旅行社可獲得最大利潤(rùn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形為梯形, , 平面, , , , 為中點(diǎn).
(1)求證:平面平面;
(2)線段上是否存在一點(diǎn),使平面?若有,請(qǐng)找出具體位置,并進(jìn)行證明:若無(wú),請(qǐng)分析說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)f(x)為增函數(shù),且f(f(x))=4x+9,g(x)=mx+m+3(m∈R).
(1)當(dāng)x∈[-1,2]時(shí),若不等式g(x)>0恒成立,求m的取值范圍;
(2)如果函數(shù)F(x)=f(x)g(x)為偶函數(shù),求m的值;
(3)當(dāng)函數(shù)f(x)和g(x)滿(mǎn)足f(g(x))=g(f(x))時(shí),求函數(shù)的值域.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com