考點(diǎn):數(shù)列的求和,等比關(guān)系的確定
專題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)由3a
n=2S
n+n,類比可得3a
n-1=2S
n-1+n-1(n≥2),兩式相減,整理即證得數(shù)列{a
n+
}是以
為首項(xiàng),3為公比的等比數(shù)列;
(Ⅱ)由(Ⅰ)得a
n+
=
•3
n⇒a
n=
(3
n-1),S
n=
-
,分組求和,利用等比數(shù)列與等差數(shù)列的求和公式,即可求得T
n的表達(dá)式.
解答:
(Ⅰ)證明:∵3a
n=2S
n+n,
∴3a
n-1=2S
n-1+n-1(n≥2),
兩式相減得:3(a
n-a
n-1)=2a
n+1(n≥2),
∴a
n=3a
n-1+1(n≥2),
∴a
n+
=3(a
n-1+
),又a
1+
=
,
∴數(shù)列{a
n+
}是以
為首項(xiàng),3為公比的等比數(shù)列;
(Ⅱ)解:由(Ⅰ)得a
n+
=
•3
n-1=
•3
n,
∴a
n=
•3
n-
=
(3
n-1),
∴S
n=
[(3+3
2+…+3
n)-n]=
(
-n)=
-
,
∴T
n=S
1+S
2+…+S
n=
(3
2+3
3+…+3
n+3
n+1)-
-
(1+2+…+n)
=
•
-
-
=
-
.
點(diǎn)評:本題考查數(shù)列的求和,著重考查等比關(guān)系的確定,突出考查分組求和,熟練應(yīng)用等比數(shù)列與等差數(shù)列的求和公式是關(guān)鍵,屬于難題.