對于函數(shù)f(x)=
sinπx,   x∈[0,2]
1
2
f(x-2),x∈(2,+∞)
,有下列4個命題:
①任取x1、x2∈[0,+∞),都有|f(x1)-f(x2)|≤2恒成立;
②f(x)=2kf(x+2k)(k∈N*),對于一切x∈[0,+∞)恒成立;
③函數(shù)y=f(x)-ln(x-1)有3個零點;
④對任意x>0,不等式f(x)≤
k
x
恒成立,則實數(shù)k的取值范圍是[
9
8
,+∞).
則其中所有真命題的序號是
 
考點:分段函數(shù)的應(yīng)用
專題:綜合題,數(shù)形結(jié)合,函數(shù)的性質(zhì)及應(yīng)用
分析:作出f(x)=
sinπx,   x∈[0,2]
1
2
f(x-2),x∈(2,+∞)
的圖象,利用圖象可得結(jié)論.
解答: 解:f(x)=
sinπx,   x∈[0,2]
1
2
f(x-2),x∈(2,+∞)
的圖象如圖所示:
①f(x)的最大值為1,最小值為-1,∴任取x1、x2∈[0,+∞),都有|f(x1)-f(x2)|≤2恒成立,正確;
②f(
1
2
)=2f(
1
2
+2)=4f(
1
2
+4)=8f(
1
2
+6)≠8f(
1
2
+8),故不正確;
③如圖所示,函數(shù)y=f(x)-ln(x-1)有3個零點;
④把(
5
2
,
1
2
)代入,可得k>
9
8

故答案為:①③.
點評:本題考查分段函數(shù)的應(yīng)用,考查數(shù)形結(jié)合的數(shù)學(xué)思想,正確作出函數(shù)的圖象是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C經(jīng)過P(4,-2),Q(-1,3)兩點,且在y軸上截得的線段長為4
3
,半徑小于5.
(1)求直線PQ與圓C的方程;
(2)若直線l∥PQ,直線l與PQ交于點A、B,且以AB為直徑的圓經(jīng)過坐標(biāo)原點,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知直線
x=-t
y=
3
t
(t為參數(shù))與曲線C1:ρ=4sinθ異于點O的交點為A,與曲線C2:ρ=2sinθ異于點O的交點為B,則|AB|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P是拋物線y2=-8x上一點,設(shè)P到此拋物線準(zhǔn)線的距離是d1,到直線x+y-10=0的距離是d2,則d1+d2的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1的左焦點為F1,右頂點為A,上頂點為B.若∠F1BA=90°,則橢圓的離心率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有男、女學(xué)生共8人,從男生中選2人,從女生中選1人分別參加數(shù)學(xué)、物理、化學(xué)三科競賽,共有90種不同方案,那么男、女生人數(shù)分別是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B分別是直線y=
3
3
x和y=-
3
3
x上的兩個動點,線段AB長為2
3
,P是AB的中點,則動點P的軌跡C的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某區(qū)有7條南北向街道,5條東西向街道(如圖).則從A點走到B點最短的走法有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-x2+1,則f(x)在點(1,1)處的切線的傾斜角為( 。
A、
π
6
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

同步練習(xí)冊答案