已知點(diǎn)P是拋物線y2=-8x上一點(diǎn),設(shè)P到此拋物線準(zhǔn)線的距離是d1,到直線x+y-10=0的距離是d2,則d1+d2的最小值是
 
考點(diǎn):拋物線的簡單性質(zhì)
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)拋物線的方程,得到焦點(diǎn)為F(-2,0),準(zhǔn)線方程是x=2.然后作PQ與垂直準(zhǔn)線,交于點(diǎn)Q,過作PM與直線x+y-10=0垂直,交于點(diǎn)M,可得PQ=d1,PM=d2.連接PF,根據(jù)拋物線的定義可得d1+d2=PF+PM,因此當(dāng)P、F、M三點(diǎn)共線且與直線x+y-10=0垂直時(shí),dl+d2最小,最后用點(diǎn)到直線的距離公式,可求出這個(gè)最小值.
解答: 解:∵拋物線方程是y2=-8x,
∴拋物線的焦點(diǎn)為F(-2,0),準(zhǔn)線方程是x=2
P是拋物線y2=-8x上一點(diǎn),過P點(diǎn)作PQ與準(zhǔn)線垂直,垂足為Q,
再過P作PM與直線x+y-10=0垂直,垂足為M
則PQ=d1,PM=d2
連接PF,根據(jù)拋物線的定義可得PF=PQ=d1,所以d1+d2=PF+PM,
可得當(dāng)P、F、M三點(diǎn)共線且與直線x+y-10=0垂直時(shí),dl+d2最。磮D中的F、P0、M0位置)
∴dl+d2的最小值是焦點(diǎn)F到直線x+y-10=0的距離,
即(dl+d2min=
|-2+0-10|
1+1
=6
2

故答案為:6
2
點(diǎn)評(píng):本題借助于求拋物線上一動(dòng)點(diǎn)到兩條定直線的距離之和的最小值問題,考查了拋物線的定義與簡單幾何性質(zhì)和點(diǎn)到直線距離公式等知識(shí)點(diǎn),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知當(dāng)a∈R且a≠1時(shí),函數(shù)f(x)=(a-1)x2-ax-m的圖象和x軸總有公共點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足an+an+1=
1
2
(n∈N*),a2=2,Sn是數(shù)列{an}的前n項(xiàng)和,則S21=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①函數(shù)f(x)=sinx,g(x)=|sinx|都是周期函數(shù);
②函數(shù)y=sin|x|在區(qū)間(-
π
2
,0)上遞增;
③函數(shù)y=cos(
2x
3
+
2
)是奇函數(shù);
④函數(shù)y=cosx,x∈[0,2π]的圖象與直線y=1圍成的圖形面積等于2π;
⑤函數(shù)f(x)是偶函數(shù),且圖象關(guān)于直線x=1對稱,則2為f(x)的一個(gè)周期.
其中正確的命題是
 
.(把正確命題的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

3張不同的電影票全部分給10個(gè)人,每人至多一張,則有不同分法的種數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面凸四邊形ABCD的邊長均大于2,且∠DAB=45°,點(diǎn)P在四邊形ABCD內(nèi)運(yùn)動(dòng),且在AB、AD上的射影分別為M、N,若PA=2,則△PMN面積的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=
sinπx,   x∈[0,2]
1
2
f(x-2),x∈(2,+∞)
,有下列4個(gè)命題:
①任取x1、x2∈[0,+∞),都有|f(x1)-f(x2)|≤2恒成立;
②f(x)=2kf(x+2k)(k∈N*),對于一切x∈[0,+∞)恒成立;
③函數(shù)y=f(x)-ln(x-1)有3個(gè)零點(diǎn);
④對任意x>0,不等式f(x)≤
k
x
恒成立,則實(shí)數(shù)k的取值范圍是[
9
8
,+∞).
則其中所有真命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an=
2n+1,n為奇數(shù)
2n,n為偶數(shù)
,則a4+a5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cosx,則f′(
π
3
)等于( 。
A、
1
2
B、-
1
2
C、-
3
2
D、
3
2

查看答案和解析>>

同步練習(xí)冊答案