【題目】下列說(shuō)法正確的是( )
A.有兩個(gè)平面互相平行,其余各面都是平行四邊形的多面體是棱柱
B.四棱錐的四個(gè)側(cè)面都可以是直角三角形
C.有兩個(gè)面互相平行,其余各面都是梯形的多面體是棱臺(tái)
D.以三角形的一條邊所在直線(xiàn)為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)形成的曲面所圍成的幾何體叫圓錐
【答案】B
【解析】
根據(jù)棱柱、棱錐、棱臺(tái)、圓錐的概念與性質(zhì)判斷.
如下圖多面體滿(mǎn)足有兩個(gè)平面互相平行,其余各面都是平行四邊形,但它不是棱柱,A錯(cuò);
如下圖,四棱錐,是矩形,底面,則其四個(gè)側(cè)面都是直角三角形,B正確;
如下圖,有兩個(gè)面互相平行,其余各面都是梯形,但的延長(zhǎng)線(xiàn)不交于同一點(diǎn),它不是棱臺(tái).C錯(cuò);
只有直角三角形以一條直角邊所在直線(xiàn)為軸旋轉(zhuǎn)一周,才能形成一個(gè)圓錐,即使是直角三角形,如果以斜邊所在直線(xiàn)為軸旋轉(zhuǎn)一周所形成的幾何體也不是圓錐,D錯(cuò).
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分13分)已知函數(shù)(為常數(shù),)
(1)若是函數(shù)的一個(gè)極值點(diǎn),求的值;
(2)求證:當(dāng)時(shí),在上是增函數(shù);
(3)若對(duì)任意的,總存在,使不等式成立,求正實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè),投資債券等穩(wěn)健型產(chǎn)品的年收益與投資額成正比,投資股票等風(fēng)險(xiǎn)型產(chǎn)品的年收益與投資額的算術(shù)平方根成正比.已知投資1萬(wàn)元時(shí)兩類(lèi)產(chǎn)品的年收益分別為0.125萬(wàn)元和0.5萬(wàn)元(如圖).
(1)分別寫(xiě)出兩種產(chǎn)品的年收益與投資額的函數(shù)關(guān)系式;
(2)該家庭現(xiàn)有20萬(wàn)元資金,全部用于理財(cái)投資,問(wèn):怎么分配資金能使投資獲得最大年收益,其最大年收益是多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知矩形的兩條對(duì)角線(xiàn)相交于點(diǎn),邊所在直線(xiàn)的方程為.點(diǎn)在邊所在直線(xiàn)上.求:
(1)邊所在直線(xiàn)的方程;
(2)邊所在直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱中,,,點(diǎn)為中點(diǎn),連接交于點(diǎn),點(diǎn)為中點(diǎn).
(1)求證:平面;
(2)求證:平面平面;
(3)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形的對(duì)角線(xiàn)與相交于點(diǎn),將沿對(duì)角線(xiàn)折起,使得平面平面(如圖),則下列命題中正確的為
A.直線(xiàn)直線(xiàn),且直線(xiàn)直線(xiàn)
B.直線(xiàn)平面,且直線(xiàn)平面
C.平面平面,且平面平面
D.平面平面,且平面平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,為平行四邊形ABCD所在平面外一點(diǎn),M,N分別為AB,PC的中點(diǎn),平面PAD平面PBC=.
(1)求證:BC∥;
(2)MN與平面PAD是否平行?試證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左頂點(diǎn),右焦點(diǎn)分別為,右準(zhǔn)線(xiàn)為,
(1)若直線(xiàn)上不存在點(diǎn),使為等腰三角形,求橢圓離心率的取值范圍;
(2)在(1)的條件下,當(dāng)取最大值時(shí),點(diǎn)坐標(biāo)為,設(shè)是橢圓上的三點(diǎn),且,求:以線(xiàn)段的中心為原點(diǎn),過(guò)兩點(diǎn)的圓方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,經(jīng)過(guò)點(diǎn)且斜率為的直線(xiàn)與橢圓有兩個(gè)不同的交點(diǎn)和.
(1)求的取值范圍;
(2)設(shè)橢圓與軸正半軸、軸正半軸的交點(diǎn)分別為,是否存在常數(shù),使得向量與共線(xiàn)?如果存在,求值;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com