設底面直徑和高都是4厘米的圓柱的內(nèi)切球為O.
(1)求球O的體積和表面積;
(2)與底面距離為1的平面和球的截面圓為M,AB是圓M內(nèi)的一條弦,其長為2
3
,求AB兩點間的球面距離.
考點:球的體積和表面積,多面體和旋轉(zhuǎn)體表面上的最短距離問題
專題:計算題,空間位置關(guān)系與距離
分析:(1)求出球O的半徑,即可求球O的體積和表面積;
(2)求出∠AOB=
3
,可得AB兩點間的球面距離.
解答: 解:(1)∵底面直徑和高都是4厘米的圓柱的內(nèi)切球為O,
∴球O的半徑為2cm,
∴球O的體積為
4
3
π•23
=
32π
3
,表面積4π•22=16π;
(2)∵AB是圓M內(nèi)的一條弦,其長為2
3
,
∴∠AOB=
3
,
∴AB兩點間的球面距離為
3
點評:本題考查AB兩點間的球面距離,考查球O的體積和表面積,確定球的半徑是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

閱讀如圖所示的程序框圖,若輸入的k=6,則輸出的值S是( 。
A、63B、64
C、127D、128

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|x-1|+|x+1|,不等式f(x)≥4的解集為M.
(Ⅰ)求M;
(Ⅱ)當a,b∈M時,證明:|
a
2
+
2
b
|≥|
a
b
+1|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D為AC中點,AE⊥BD于E,延長AE交BC于F,將△ABD沿BD折起,使平面ABD⊥平面BCD,如圖2所示.
(1)求證:AE⊥平面BCD;
(2)求二面角A-DC-B的余弦值;
(3)已知點M在線段AF上,且EM∥平面ADC,求
AM
AF
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+y2
=1經(jīng)過點P(1,
2
2
).
(Ⅰ)求橢圓C的方程及其離心率;
(Ⅱ)過橢圓右焦點F的直線(不經(jīng)過點P)與橢圓交于A、B兩點,當∠APB的平分線為PF時,求直線AB的斜率k.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b,c∈R,且a+b+c=3,a2+b2+c2的最小值為M.
(Ⅰ)求M的值;
(Ⅱ)解關(guān)于x的不等式|x+4|-|x-1|≥M.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y,z∈R+,且x+y+z=1,x2+y2+z2
xyz
≤1恒成立,求λ的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=(lgx)2-2alg(10x)+a2(1≤x≤10)的最小值為g(a),求g(a)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,M、N、P分別為所在邊的中點,O為面對角線A1C1的中點.
(1)求證:面MNP∥面A1C1B.
(2)求證:OM⊥面A1BC1

查看答案和解析>>

同步練習冊答案