設(shè)函數(shù)f(x)=lg(1-x2) 集合A={x|y=f(x)},B={y|y=f(x)},則圖中陰影部分表示的集合為
 
考點:Venn圖表達集合的關(guān)系及運算
專題:計算題,集合
分析:由題意,化簡集合A,B,再由圖象求集合.
解答: 解:A={x|y=f(x)}=(-1,1),
B={y|y=f(x)}=(-∞,0],
故圖中陰影部分表示的集合為
(-∞,-1]∪(0,1);
故答案為:(-∞,-1]∪(0,1).
點評:本題考查了集合的化簡與運算,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}中,若
a7
a5
=
9
13
,則
S13
S9
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若x,y滿足約束條件
x≥0
y≥0
y+x≤4
,P為上述不等式組表示的平面區(qū)域,則:
(1)目標函數(shù)z=y-2x的最小值為
 

(2)當b從-8連續(xù)變化到
 
時,動直線y-2x=b掃過P中的那部分區(qū)域的面積為
16
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinα+sinβ=
2
3
,求cosα+cosβ取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,以ox軸為始邊作角α與β(0<β<α<π),它們終邊分別與單位圓相交于點P,Q,已知點P的坐標為(-
3
5
,
4
5

(1)求
sin2α+cos2α+1
1+tanα
的值;
(2)若OP⊥OQ,求
sin(α+β)
2
cos(
π
4
+β)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:log4(1+
2
+
3
)+log4(1+
2
-
3
)的值等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)x,y滿足約束條件
2x+3y+6≥0
x-3y+3≥0
x≤1
y≥-2
;
,則目標函數(shù)z=2x+y的最大值為( 。
A、-6
B、-
10
3
C、
10
3
D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A=[-2,2],B=[-1,1],設(shè)M={(x,y)|x∈A,y∈B},在集合M內(nèi)隨機取出一個元素(x,y).
(1)求以(x,y)為坐標的點落在圓x2+y2=1內(nèi)的概率;
(2)求以(x,y)為坐標的點到直線x+y=0的距離不大于
2
2
的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=sin2x+sinx-1的值域為(  )
A、[-1,1]
B、[-
5
4
,-1]
C、[-
5
4
,1]
D、[-1,
5
4

查看答案和解析>>

同步練習冊答案