分析 (1)任取-1≤x1<x2≤1,則f(x2)=f(x1+x2-x1)=f(x1)+f(x2-x1),由x2-x1>0,可得f(x2-x1)>0,即可證明.
(2)由f(x)+f(y)=f(x+y),令x=y=0,解得f(0)=0.令y=-x,則f(x)+f(-x)=0,可得f(x)在[-1,1]上的奇函數(shù),又在[-1,1]上是增函數(shù),f(x2-1)+f(3-3x)<0化為:f(x2-1)<f(3x-3),利用單調性即可得出.
(3)利用f(x)的單調性,可得f(x)在[-1,1]上的最大值為f(1),又f(1)=-f(-1)=-2f$(\frac{1}{2})$.要使f(x)≤t2-2at+1對任意x∈[-1,1],a∈[-1,1]恒成立,只要t2-2at+1≥1,即t2-2at≥0,設g(a)=-2ta+t2對任意a∈[-1,1],g(a)≥0恒成立,利用一次函數(shù)的單調性即可得出.
解答 (1)證明:任取-1≤x1<x2≤1,則f(x2)=f(x1+x2-x1)=f(x1)+f(x2-x1),
由x2-x1>0,∴f(x2-x1)>0,∴f(x2)>f(x1),
∴f(x)在[-1,1]上是增函數(shù).
(2)解:由f(x)+f(y)=f(x+y),
令x=y=0,則2f(0)=f(0),解得f(0)=0.
令y=-x,
則f(x)+f(-x)=f(0)=0,
∴f(-x)=-f(x).
∴f(x)在[-1,1]上的奇函數(shù),且在[-1,1]上是增函數(shù),
∴f(x2-1)+f(3-3x)<0化為:f(x2-1)<f(3x-3),
∴$\left\{\begin{array}{l}{{x}^{2}-1<3x-3}\\{-1≤{x}^{2}-1≤1}\\{-1≤3x-3≤1}\end{array}\right.$,解得x∈$(1,\frac{4}{3}]$.
(3)解:由(1)知f(x)在[-1,1]上是增函數(shù),∴f(x)在[-1,1]上的最大值為f(1),
∵f(1)=-f(-1)=$f(-\frac{1}{2}-\frac{1}{2})$=-2f$(\frac{1}{2})$=1.
要使f(x)≤t2-2at+1對任意x∈[-1,1],a∈[-1,1]恒成立,
只要t2-2at+1≥1,即t2-2at≥0,
設g(a)=-2ta+t2對任意a∈[-1,1],g(a)≥0恒成立,
∴$\left\{\begin{array}{l}{g(-1)≥0}\\{g(1)≥0}\end{array}\right.$,解得t≥2或t≤-2或t=0.
點評 本題考查了抽象函數(shù)的單調性與奇偶性、不等式的解法、一次函數(shù)的單調性,考查了推理能力與計算能力,屬于難題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | M=P | B. | P?M | C. | M?P | D. | M∪P=R |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com