【題目】已知數(shù)列{an}滿足:
(1)求a2 , a3
(2)猜想{an}通項公式并加以證明.

【答案】
(1)解:數(shù)列{an}滿足: ,

∴n=2時, =22a2,可得a2= ,

∴n=3時, +a3=9a3,解得a3=


(2)解:猜想an=

證明:∵

∴n≥2時,a1+a2+…+an1=(n﹣1)2an1

∴n2an﹣(n﹣1)2an1=an

化為:

∴an= a1

= …× × ×

=


【解析】(1)數(shù)列{an}滿足: ,n=2時, =22a2 , 可得a2= ,n=3時, +a3=9a3 , 解得a3 . (2)猜想an= .利用遞推關(guān)系化為: .再利用an= a1即可得出.
【考點精析】通過靈活運用數(shù)列的通項公式,掌握如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式即可以解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某研究小組為了研究某品牌智能手機在正常使用情況下的電池供電時間,分別從該品牌手機的甲、乙兩種型號中各選取部進行測試,其結(jié)果如下:

甲種手機供電時間(小時)

乙種手機供電時間(小時)

(1)求甲、乙兩種手機供電時間的平均值與方差,并判斷哪種手機電池質(zhì)量好;

(2)為了進一步研究乙種手機的電池性能,從上述部乙種手機中隨機抽取部,記所抽部手機供電時間不小于小時的個數(shù)為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an+1﹣2an}是公比為2的等比數(shù)列,其中a1=1,a2=4.
(1)證明:數(shù)列{ }是等差數(shù)列;
(2)求數(shù)列{an}的前n項和Sn;
(3)記Cn= (n≥2),證明: n +…+ ≤1﹣( n1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋子里有編號為的五個球,某位教師從袋中任取兩個不同的球. 教師把所取兩球編號的和只告訴甲,其乘積只告訴乙,讓甲、乙分別推斷這兩個球的編號.

甲說:我無法確定.”

乙說:我也無法確定.”

甲聽完乙的回答以后,甲又說:我可以確定了.”

根據(jù)以上信息, 你可以推斷出抽取的兩球中

A. 一定有3號球 B. 一定沒有3號球 C. 可能有5號球 D. 可能有6號球

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】經(jīng)研究,城市公交車的數(shù)量太多容易造成資源浪費,太少又難以滿足乘客需求.為此,某市公交公司從某站占的40名候車乘客中隨機抽取15人,將他們的候車時間(單位: )作為樣本分成5組如下表:

組別

侯車時間

人數(shù)

2

6

2

2

3

1)估計這40名乘客中侯車時間不少于20分鐘的人數(shù);

2)若從上表侯車時間不少于10分鐘的7人中選2人作進一步的問卷調(diào)查,求抽到的兩人侯車時間都不少于20分鐘的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣1)2(x﹣a)(a∈R)在x= 處取得極值.
(1)求實數(shù)a的值;
(2)求函數(shù)y=f(x)在閉區(qū)間[0,3]的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)證明當時,關(guān)于的不等式恒成立;

(Ⅲ)若正實數(shù)滿足,證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)實數(shù)x,y滿足 ,則μ= 的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面幾種推理中是演繹推理的序號為(
A.由金、銀、銅、鐵可導電,猜想:金屬都可導電
B.猜想數(shù)列 {an}的通項公式為 (n∈N+
C.半徑為r圓的面積S=πr2 , 則單位圓的面積S=π
D.由平面直角坐標系中圓的方程為(x﹣a)2+(y﹣b)2=r2 , 推測空間直角坐標系中球的方程為(x﹣a)2+(y﹣b)2+(z﹣c)2=r2

查看答案和解析>>

同步練習冊答案