【題目】如圖,三棱柱ABCA1B1C1中,側(cè)棱垂直于底面,∠ACB90°,ACBCAA1D是棱AA1的中點(diǎn).

(1)證明:平面BDC1⊥平面BDC;

(2)平面BDC1分此棱柱為兩部分,求這兩部分體積的比.

【答案】(1)見(jiàn)解析.(2)1:1.

【解析】

(1)由已知可以證明出平面,也就證明出,在側(cè)面

中,可以證明出,這樣可以證明平面,也就能證明出

平面BDC1⊥平面BDC

(2)分別計(jì)算出棱錐BDACC1的體積,三棱柱ABCA1B1C1的體積,最后求出平面BDC1分此棱柱為兩部分體積的比.

(1)證明 由題設(shè)知,,,又,平面,所以平面.平面,所以.

由題設(shè)知,所以,即.

,平面

所以平面.

平面,

故平面平面.

(2)解 設(shè)棱錐BDACC1的體積為V1,AC1.

由題意得V1

又三棱柱ABCA1B1C1的體積V1,所以(VV1)V111.

故平面BDC1分此棱柱所得兩部分的體積的比為11.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),曲線總在曲線的下方,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某品牌服裝店為了慶祝開(kāi)業(yè)兩周年,特舉辦“你敢買(mǎi),我就送”的回饋活動(dòng),規(guī)定店慶當(dāng)日進(jìn)店購(gòu)買(mǎi)指定服裝的消費(fèi)者可參加游戲,贏取獎(jiǎng)金,游戲分為以下兩種:

游戲 1:參加該游戲贏取獎(jiǎng)金的成功率為,成功后可獲得元獎(jiǎng)金;

游戲 2:參加該游戲贏取獎(jiǎng)金的成功率為,成功后可得元獎(jiǎng)金;

無(wú)論參與哪種游戲,未成功均沒(méi)有收獲,每人有且僅有一次機(jī)會(huì),且每次游戲成功與否均互不影響,游戲結(jié)束后可到收銀臺(tái)領(lǐng)取獎(jiǎng)金。

(Ⅰ)已知甲參加游戲 1,乙參加游戲 2,記甲與乙獲得的總獎(jiǎng)金為,若,求的值;

(Ⅱ)若甲、乙、丙三人都選擇游戲 1或都選擇游戲 2,問(wèn):他們選擇何種規(guī)則,累計(jì)得到獎(jiǎng)金的數(shù)學(xué)期望值最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

)當(dāng)時(shí),

)求的單調(diào)區(qū)間;

)若在區(qū)間內(nèi)單調(diào)遞減,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓的左、右焦點(diǎn)分別為,離心率為,過(guò)焦點(diǎn)且垂直于軸的直線被橢圓截得的線段長(zhǎng)為

(Ⅰ)求橢圓的方程;

(Ⅱ)點(diǎn)為橢圓上一動(dòng)點(diǎn),連接、,設(shè)的角平分線交橢圓的長(zhǎng)軸于點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為降低空氣污染,提高環(huán)境質(zhì)量,政府決定對(duì)汽車(chē)尾氣進(jìn)行整治.某廠家生產(chǎn)甲、乙兩種不同型號(hào)的汽車(chē)尾氣凈化器,為保證凈化器的質(zhì)量,分別從甲、乙兩種型號(hào)的凈化器中隨機(jī)抽取100件作為樣本進(jìn)行產(chǎn)品性能質(zhì)量評(píng)估,評(píng)估綜合得分都在區(qū)間.已知評(píng)估綜合得分與產(chǎn)品等級(jí)如下表:

根據(jù)評(píng)估綜合得分,統(tǒng)計(jì)整理得到了甲型號(hào)的樣本頻數(shù)分布表和乙型號(hào)的樣本頻率分布直方圖(圖表如下).

甲型 乙型

(Ⅰ)從廠家生產(chǎn)的乙型凈化器中隨機(jī)抽取一件,估計(jì)這件產(chǎn)品為二級(jí)品的概率;

(Ⅱ)從廠家生產(chǎn)的乙型凈化器中隨機(jī)抽取3件,設(shè)隨機(jī)變量為其中二級(jí)品的個(gè)數(shù),求的分布列和數(shù)學(xué)期望;

(Ⅲ)根據(jù)圖表數(shù)據(jù),請(qǐng)自定標(biāo)準(zhǔn),對(duì)甲、乙兩種型號(hào)汽車(chē)尾氣凈化器的優(yōu)劣情況進(jìn)行比較.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某調(diào)查機(jī)構(gòu)對(duì)全國(guó)互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、90后從事互聯(lián)網(wǎng)行業(yè)者崗位分布條形圖,則下列結(jié)論中不一定正確的是( ).

注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.

A. 互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上

B. 互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過(guò)總?cè)藬?shù)的20%

C. 互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)90后比80前多

D. 互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是橢圓的左、右焦點(diǎn),為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,線段軸的交點(diǎn)滿足

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)圓是以為直徑的圓,一直線與圓相切,并與橢圓交于不同的兩點(diǎn),當(dāng),且滿足時(shí),求的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知梯形中,,,,四邊形為矩形,,平面平面.

(1)求證:平面

(2)在線段上是否存在點(diǎn),使得直線與平面所成角的正弦值為,若存在,求出線段的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案