化簡求值:
(1)2 
1
2
+
(-4)0
2
+
1
2
-1
-
(1-
5
)0
;
(2)
1
5
(lg32-log 
1
2
16+6lg
1
2
)-
1
5
lg5.
考點:對數(shù)的運算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)利用分?jǐn)?shù)指數(shù)冪的運算法則求解.
(2)利用對數(shù)的運算法則求解.
解答: (1)解:2 
1
2
+
(-4)0
2
+
1
2
-1
-
(1-
5
)0

=
2
2
+
2
2
+
2
+1
-1…(4分)
=2
2
…(6分)
(2)解:
1
5
(lg32-log 
1
2
16+6lg
1
2
)-
1
5
lg5
=
1
5
(5lg2+4-6lg2)-
1
5
lg5
…(4分)
=
1
5
(-lg2-lg5+4)
…(5分)=
3
5
.…(7分)
點評:本題考查指數(shù)式和對數(shù)式的計算,是基礎(chǔ)題,解題時要認(rèn)真審題,注意運算法則的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)在[0,+∞)內(nèi)為增函數(shù)的是( 。
A、y=x2-x
B、y=-
1
x
C、y=lnx
D、y=ex

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且a2=b2+c2+bc.
(1)求A的大小;
(2)求sinB+sinC的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-12x,x∈[-3,3].求函數(shù)的極值和最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-3x+2=0},B={x|x2-ax+a-1=0},若B⊆A,求滿足條件的實數(shù)a的值所組成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)是定義在R上的周期函數(shù),周期T=5.函數(shù)y=f(x)(-1≤x≤1)是奇函數(shù),且在[1,4]上是二次函數(shù),在x=2時函數(shù)取最小值-5.試求:
(1)f(1)+f(4)的值;
(2)y=f(x),x∈[1,4]的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(m+1)-1<(3-2m)-1,試求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率與等軸雙曲線的離心率互為倒數(shù)關(guān)系,直線l:x-y+
2
=0與以原點為圓心,以橢圓C的短半軸長為半徑的圓相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)M是橢圓的上頂點,過點M分別作直線MA,MB交橢圓于A,B兩點,設(shè)兩直線的斜率分別為k1,k2,且k1+k2=4,求證:直線AB過定點;
(Ⅲ)過點P(0,2)的直線l與橢圓交于不同的兩點D、E,當(dāng)△ODE面積最大時,求|DE|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-4x+4
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[0,3]上最大值.

查看答案和解析>>

同步練習(xí)冊答案