【題目】已知的內(nèi)角、、的對(duì)邊分別為、、,內(nèi)一點(diǎn),若分別滿足下列四個(gè)條件:

;

;

;

則點(diǎn)分別為的(

A.外心、內(nèi)心、垂心、重心B.內(nèi)心、外心、垂心、重心

C.垂心、內(nèi)心、重心、外心D.內(nèi)心、垂心、外心、重心

【答案】D

【解析】

先考慮直角,可令,,,可得,,設(shè),由向量的坐標(biāo)表示和三角函數(shù)的恒等變換公式計(jì)算可判斷①③④為三角形的內(nèi)心、外心和重心;考慮等腰,底角為,設(shè),,由向量的坐標(biāo)表示和向量垂直的條件,可判斷②為三角形的垂心.

先考慮直角,可令,,

可得,,,設(shè),

,即為,

即有,,解得

即有,軸的距離為1的平分線上,且到的距離也為1,

的內(nèi)心;

,

即為,

可得,,解得,,

,故的外心;

,可得,

即為,,解得,,

的中點(diǎn),,即分中線比為,

的重心;

考慮等腰,底角為

設(shè),,,

即為,

可得,,解得,,

,由,即有,

的垂心.

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列 中,已知 為常數(shù).

(1)證明: 成等差數(shù)列;

(2)設(shè) ,求數(shù)列的前n項(xiàng)和 ;

(3)當(dāng)時(shí),數(shù)列 中是否存在不同的三項(xiàng)成等比數(shù)列,

也成等比數(shù)列?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩點(diǎn),點(diǎn)是直角坐標(biāo)平面上的動(dòng)點(diǎn),若將點(diǎn)的橫坐標(biāo)保持不變、縱坐標(biāo)擴(kuò)大到倍后得到點(diǎn),且滿足

1)求動(dòng)點(diǎn)所在曲線的方程;

2)過點(diǎn)作斜率為的直線交曲線、兩點(diǎn),且滿足,又點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為點(diǎn),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)2018年的高考考生人數(shù)是2015年高考考生人數(shù)的倍,為了更好地對(duì)比該校考生的升學(xué)情況,統(tǒng)計(jì)了該校2015年和2018年的高考情況,得到如圖柱狀圖:

則下列結(jié)論正確的是  

A. 與2015年相比,2018年一本達(dá)線人數(shù)減少

B. 與2015年相比,2018年二本達(dá)線人數(shù)增加了

C. 2015年與2018年藝體達(dá)線人數(shù)相同

D. 與2015年相比,2018年不上線的人數(shù)有所增加

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,底面是邊長為4的正三角形,,底面,點(diǎn)分別為,的中點(diǎn).

(1)求證:平面平面;

(2)在線段上是否存在點(diǎn),使得直線與平面所成的角的正弦值為?若存在,確定點(diǎn)的位置;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知城市周邊有兩個(gè)小鎮(zhèn),其中鄉(xiāng)鎮(zhèn)位于城市的正東方處,鄉(xiāng)鎮(zhèn)與城市相距,夾角的正切值為2,為方便交通,現(xiàn)準(zhǔn)備建設(shè)一條經(jīng)過城市的公路,使鄉(xiāng)鎮(zhèn)分別位于的兩側(cè),過建設(shè)兩條垂直的公路,分別與公路交匯于、兩點(diǎn),以為原點(diǎn),所在直線為軸,建立如圖所示的平面直角坐標(biāo)系.

1)當(dāng)兩個(gè)交匯點(diǎn)重合,試確定此時(shí)路段長度;

2)當(dāng),計(jì)算此時(shí)兩個(gè)交匯點(diǎn)、到城市的距離之比;

3)若要求兩個(gè)交匯點(diǎn)、的距離不超過,求正切值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)直線l的方程為y=(-a-1)x +a-2.

1)求直線過定點(diǎn)A的坐標(biāo);

2)若l在兩坐標(biāo)軸上的截距相等,求l的方程;

3)若l不經(jīng)過第二象限,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,是等邊三角形,是等腰直角三角形, ,平面平面,平面.

(1) 求證:;

(2) 若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,其中為自然對(duì)數(shù)的底數(shù),若存在實(shí)數(shù)使得,則實(shí)數(shù)的值為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案