在鈍角三角形ABC中,a=1,b=2,則最大邊c的取值范圍是( 。
A、(
3
,3)
B、(
5
,3)
C、(2,3)
D、(
6
,3)
考點:余弦定理
專題:解三角形
分析:利用余弦定理表示出cosC,把a與b代入,根據(jù)cosC小于0求出c的范圍即可.
解答: 解:∵在鈍角三角形ABC中,a=1,b=2,
∴由余弦定理得:cosC=
a2+b2-c2
2ab
=
1+4-c2
4
<0,
解得:
5
<c<3,
則最大邊c的范圍為(
5
,3).
故選:B.
點評:此題考查了余弦定理,以及余弦函數(shù)的性質(zhì),熟練掌握定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x2-2ax+b,當(dāng)時x=-1時,f(x)取最小值-8,記集合A={x|f(x)>0},B={x||x-t|≤1}
(Ⅰ)當(dāng)t=1時,求(∁RA)∪B;
(Ⅱ)設(shè)命題P:A∩B≠∅,若¬P為真命題,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn為數(shù)列{an}的前n項之和,若不等式n2an2+4Sn2≥λn2a12對任何等差數(shù)列{an}及任何正整數(shù)n恒成立,則λ的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知圓M:x2+(y-4)2=4,直線l的方程為x-2y=0,點P是直線l上一動點,過點P作圓的切線PA、PB,切點為A、B.
(1)當(dāng)P的橫坐標(biāo)為
16
5
時,求∠APB的大。
(2)求證:經(jīng)過A、P、M三點的圓N必過定點,并求出所有定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
sinβ
cosβ
=4,則cosβ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列式子正確的是( 。
A、
AB
-
AC
=
BC
B、
a
•(
b
c
)=(
a
b
)•
c
C、λ(μa)=(λμ)
a
D、
O
AB
=
O

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:p:x≥k,q:
2-x
x+1
<0,如果p是q的充分不必要條件,則k的取值范圍是( 。
A、[2,+∞)
B、(2,+∞)
C、[1,+∞)
D、(-∞,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=1-(x-a)(x-b)(a<b),m,n為y=f(x)的兩個零點,且m<n,則a,b,m,n的大小關(guān)系是( 。
A、a<m<n<b
B、m<a<b<n
C、a<b<m<n
D、m<n<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個質(zhì)地均勻的正四面體玩具的四個面上分別標(biāo)有1,2,3,4這四個數(shù)字.若連續(xù)兩次拋擲這個玩具,則兩次向下的面上的數(shù)字之積為偶數(shù)的概率是(  )
A、
1
2
B、
3
4
C、
3
5
D、
5
8

查看答案和解析>>

同步練習(xí)冊答案