【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值.由測(cè)量表得到如下頻率分布直方圖
(1)補(bǔ)全上面的頻率分布直方圖(用陰影表示);
(2)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中間值作為代表,據(jù)此估計(jì)這種產(chǎn)品質(zhì)量指標(biāo)值服從正態(tài)分布Z(μ,σ2),其中μ近似為樣本平均值,σ2近似為樣本方差s2(組數(shù)據(jù)取中間值);
①利用該正態(tài)分布,求從該廠生產(chǎn)的產(chǎn)品中任取一件,該產(chǎn)品為合格品的概率;
②該企業(yè)每年生產(chǎn)這種產(chǎn)品10萬件,生產(chǎn)一件合格品利潤10元,生產(chǎn)一件不合格品虧損20元,則該企業(yè)的年利潤是多少?
參考數(shù)據(jù):=5.1,若Z~N(μ,σ2),則P(μ﹣σ,μ+σ)=0.6826,P(μ﹣2σ,μ+2σ)=0.9544.
【答案】(1)見解析;(2)①0.9544,②863200.
【解析】
(1)由頻率分布圖求出[95,105)的頻率,由此能作出補(bǔ)全頻率分布直方圖;
(2)求出質(zhì)量指標(biāo)值的樣本平均數(shù)、質(zhì)量指標(biāo)值的樣本方差;
①由(2)知Z~N(100,104),從而求出P(79.6<Z<120.4),注意運(yùn)用所給數(shù)據(jù);
②設(shè)這種產(chǎn)品每件利潤為隨機(jī)變量E(X),即可求得EX.
(1)由頻率分布直方圖得:[95,105)的頻率為:1﹣(0.006+0.026+0.022+0.008)×10=0.038,補(bǔ)全上面的頻率分布直方圖(用陰影表示):
質(zhì)量指標(biāo)值的樣本平均數(shù)為:
=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.
質(zhì)量指標(biāo)值的樣本方差為
S2=(﹣20)2×0.06+(﹣10)2×0.26+0×0.38+102×0.22+202×0.08=104.
(2)①由(1)知Z~N(100,104),從而P(79.6<Z<120.4)=P(100﹣2×10.2<Z<100+2×10.2)=0.9544;
②由①知一件產(chǎn)品的質(zhì)量指標(biāo)值位于區(qū)間(79.6,120.4)的概率為0.9544,
該企業(yè)的年利潤是EX=100000[0.9544×10﹣(1﹣0.9544)×20]=863200.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為為參數(shù)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,且圓心C在直線l上.
Ⅰ求直線l的直角坐標(biāo)方程及圓C的極坐標(biāo)方程;
Ⅱ若是直線l上一點(diǎn),是圓C上一點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,已知平面,為等邊三角形,,,與平面所成角的正切值為.
(Ⅰ)證明:平面;
(Ⅱ)若是的中點(diǎn),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心是坐標(biāo)原點(diǎn),它的短軸長為,一個(gè)焦點(diǎn)為,一個(gè)定點(diǎn),且,過點(diǎn)的直線與橢圓相交于兩點(diǎn)..
(1)求橢圓的方程及離心率.
(2)如果以為直徑的圓過原點(diǎn),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓經(jīng)過, 兩點(diǎn),且圓心在直線上.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)過圓內(nèi)一點(diǎn)作兩條相互垂直的弦,當(dāng)時(shí),求四邊形的面積.
(3)設(shè)直線與圓相交于兩點(diǎn), ,且的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣有兩個(gè)極值點(diǎn).
(1)求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)f(x)的兩個(gè)極值點(diǎn)分別為x1,x2,求證:x1+x2>2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查一款電視機(jī)的使用時(shí)間,研究人員對(duì)該款電視機(jī)進(jìn)行了相應(yīng)的測(cè)試,將得到的數(shù)據(jù)統(tǒng)計(jì)如下圖所示:
并對(duì)不同年齡層的市民對(duì)這款電視機(jī)的購買意愿作出調(diào)查,得到的數(shù)據(jù)如下表所示:
愿意購買這款電視機(jī) | 不愿意購買這款電視機(jī) | 總計(jì) | |
40歲以上 | 800 | 1000 | |
40歲以下 | 600 | ||
總計(jì) | 1200 |
(1)根據(jù)圖中的數(shù)據(jù),試估計(jì)該款電視機(jī)的平均使用時(shí)間;
(2)根據(jù)表中數(shù)據(jù),判斷是否有99.9%的把握認(rèn)為“愿意購買該款電視機(jī)”與“市民的年齡”有關(guān);
(3)若按照電視機(jī)的使用時(shí)間進(jìn)行分層抽樣,從使用時(shí)間在和的電視機(jī)中抽取5臺(tái),再從這5臺(tái)中隨機(jī)抽取2臺(tái)進(jìn)行配件檢測(cè),求被抽取的2臺(tái)電視機(jī)的使用時(shí)間都在內(nèi)的概率.
附: | 0.100 | 0.050 | 0.010 | 0.001 |
2.706 | 3.841> | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市場(chǎng)研究人員為了了解產(chǎn)業(yè)園引進(jìn)的甲公司前期的經(jīng)營狀況,對(duì)該公司2018年連續(xù)六個(gè)月的利潤進(jìn)行了統(tǒng)計(jì),并根據(jù)得到的數(shù)據(jù)繪制了相應(yīng)的折線圖,如圖所示
(1)由折線圖可以看出,可用線性回歸模型擬合月利潤(單位:百萬元)與月份代碼之間的關(guān)系,求關(guān)于的線性回歸方程,并預(yù)測(cè)該公司2019年3月份的利潤;
(2)甲公司新研制了一款產(chǎn)品,需要采購一批新型材料,現(xiàn)有,兩種型號(hào)的新型材料可供選擇,按規(guī)定每種新型材料最多可使用個(gè)月,但新材料的不穩(wěn)定性會(huì)導(dǎo)致材料損壞的年限不相同,現(xiàn)對(duì),兩種型號(hào)的新型材料對(duì)應(yīng)的產(chǎn)品各件進(jìn)行科學(xué)模擬測(cè)試,得到兩種新型材料使用壽命的頻數(shù)統(tǒng)計(jì)如下表:
使用壽命 材料類型 | 個(gè)月 | 個(gè)月 | 個(gè)月 | 個(gè)月 | 總計(jì) |
如果你是甲公司的負(fù)責(zé)人,你會(huì)選擇采購哪款新型材料?
參考數(shù)據(jù):,.參考公式:回歸直線方程為,其中 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為慶祝國慶節(jié),某中學(xué)團(tuán)委組織了“歌頌祖國,愛我中華”知識(shí)競(jìng)賽,從參加考試的學(xué)生中抽出60名,將其成績(成績均為整數(shù))分成[40,50),[50,60),…,[90,100)六組,并畫出如圖所示的部分頻率分布直方圖,觀察圖形,回答下列問題:
(1)求第四組的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(2)估計(jì)這次考試的及格率(60分及以上為及格)和平均分.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com