精英家教網 > 高中數學 > 題目詳情

【題目】在平面直角坐標系xOy中,圓C的參數方程為為參數以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,直線的極坐標方程為,且圓心C在直線l上.

求直線l的直角坐標方程及圓C的極坐標方程;

是直線l上一點,是圓C上一點,求的面積.

【答案】(Ⅰ)直線l的直角坐標方程為,圓C的極坐標方程為;(Ⅱ)

【解析】

直接利用轉換關系,把參數方程直角坐標方程和極坐標方程之間進行轉換.

,是直線l上一點,可得,是圓C上一點,可得,結合面積公式,即可求解。

解:直線的極坐標方程為,

轉換為直角坐標方程為:

C的參數方程為為參數

轉換為直角坐標方程為:,

由于圓心在直線l上,

則:,解得:

所以圓的方程轉換為

轉換為極坐標方程為:

,是直線l上一點,

代入,

整理得:,

是圓C上一點,

代入,

整理得:

,

所以:

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】[2019·吉林期末]一個袋中裝有6個大小形狀完全相同的球,球的編號分別為1,2,3,4,5,6.

(1)從袋中隨機抽取兩個球,求取出的球的編號之和為6的概率;

(2)先后有放回地隨機抽取兩個球,兩次取的球的編號分別記為,求的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《中華人民共和國道路交通安全法》第47條的相關規(guī)定:機動車行經人行道時,應當減速慢行;遇行人正在通過人行道,應當停車讓行,俗稱“禮讓斑馬線”, 《中華人民共和國道路交通安全法》第90條規(guī)定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設備所抓拍的5個月內駕駛員“禮讓斑馬線”行為統計數據:

月份

1

2

3

4

5

違章駕駛員人數

120

105

100

90

85

(1)請利用所給數據求違章人數與月份之間的回歸直線方程

(2)預測該路口9月份的不“禮讓斑馬線”違章駕駛員人數.

參考公式: , .

參考數據: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某工廠在生產產品時需要用到長度為型和長度為型兩種鋼管.工廠利用長度為的鋼管原材料,裁剪成若干型和型鋼管,假設裁剪時損耗忽略不計,裁剪后所剩廢料與原材料的百分比稱為廢料率.

(1)要使裁剪的廢料率小于,共有幾種方案剪裁?請寫出每種方案中分別被裁剪型鋼管和型鋼管的根數;

(2)假設一根型鋼管和一根型鋼管能成為一套毛胚,假定只能按(1)中的那些方案裁剪,若工廠需要生產套毛胚,則至少需要采購多少根長度為的鋼管原材料?最終的廢料率為多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖在四邊形PBCD中,,,,,,沿AB把三角形PAB折起,使P,D兩點的距離為10,得到如圖所示圖形.

求證:平面平面PAC

若點EPD的中點,求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】F1F2分別是橢圓的左、右焦點,過的直線相交 于A,B兩點,且|AF2|,|AB||BF2|成等差數列.

1)求|AB|;

2)若直線的斜率為1,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C)過點,短軸一個端點到右焦點的距離為2

1)求橢圓C的方程;

2)設過定點的直線1與橢圓交于不同的兩點A,B,若坐標原點O在以線段AB為直徑的圓上,求直線l的斜率k

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(Ⅰ)求函數的單調區(qū)間與極值;

(Ⅱ)若不等式對任意恒成立,求實數的取值范圍;

(Ⅲ)求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】從某企業(yè)生產的某種產品中抽取100件,測量這些產品的一項質量指標值.由測量表得到如下頻率分布直方圖

(1)補全上面的頻率分布直方圖(用陰影表示);

(2)統計方法中,同一組數據常用該組區(qū)間的中間值作為代表,據此估計這種產品質量指標值服從正態(tài)分布Z(μ,σ2),其中μ近似為樣本平均值,σ2近似為樣本方差s2(組數據取中間值);

①利用該正態(tài)分布,求從該廠生產的產品中任取一件,該產品為合格品的概率;

②該企業(yè)每年生產這種產品10萬件,生產一件合格品利潤10元,生產一件不合格品虧損20元,則該企業(yè)的年利潤是多少?

參考數據:=5.1,若Z~N(μ,σ2),則P(μ﹣σ,μ+σ)=0.6826,P(μ﹣2σ,μ+2σ)=0.9544.

查看答案和解析>>

同步練習冊答案