拋擲一枚骰子,記事件A為“落地時向上的數(shù)是奇數(shù)”,記事件B為“落地時向上的數(shù)是偶數(shù)”,事件C為“落地時向上的數(shù)是2的倍數(shù)”,事件D為“落地時向上的數(shù)是2或4”,則下列每對事件是互斥事件但不是對立事件的是( 。
A、A與DB、A與B
C、B與CD、B與D
考點:互斥事件與對立事件
專題:概率與統(tǒng)計
分析:互斥事件不一定是對立事件,對立事件一定是互斥事件,利用定義子集判斷即可.
解答: 解:拋擲一枚質(zhì)地均勻的骰子,落地后記事件A為“奇數(shù)點向上”,事件B為“偶數(shù)點向上”,事件C為“向上的點數(shù)是2的倍數(shù)”,事件D為“2點或4點向上”.
事件A、B既是互斥事件也是對立事件;所以B不正確.
B與C是相同事件,表示互斥事件.所以不正確.
B與D不是互斥事件,所以不正確.
A與D是互斥事件,對數(shù)不是對立事件,所以A正確.
故選:A.
點評:本題主要考查對立事件和互斥事件的關(guān)系,不可能同時發(fā)生的兩個事件叫做互斥事件,也叫互不相容事件,其中必有一個發(fā)生的兩個互斥事件叫對立事件
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

f(x)是定義在[-4,4]上的偶函數(shù),且f(3)>f(1),則下列關(guān)系一定成立的是(  )
A、f(0)<f(4)
B、f(3)>f(2)
C、f(-1)<f(3)
D、f(2)>f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:y=2x+5,以下說法錯誤的是( 。
A、若l1與l關(guān)于y軸對稱,則l1的方程為y=-2x+5
B、若l2與l關(guān)于x軸對稱,則l2的方程為y=-2x-5
C、若l3與l關(guān)于原點對稱,則l3的方程為y=2x-5
D、若l4與l關(guān)于y=x對稱,則l4的方程為x-2y+5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

26個英文字母按照字母表順序排列:a,b,c,…,x,y,z,若f(n)表示處于第n個位置上的字母,如f(1)=a,f(2)=b.函數(shù)g(x)=
x+4(0≤x≤22)
26-x(22<x≤25)
,若f(g(15)),f(g(16)),f(g(x1)),f(g(0)),f(g(x2)所表示的字母依次排列組成的英文單詞為“study”,則x2-x1=( 。
A、1B、2C、4D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別是角A,B,C的對邊,滿足a=2b,則
sinA
sinB
=( 。
A、2
B、
1
2
C、
2
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
x-5(x≥5)
f(x+2)(x<6)
(x∈N)則f(3)的值為(  )
A、2B、5C、4D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“?x∈[1,2],x2-a≤0恒成立”的一個必要不充分條件是( 。
A、a≥4B、a≤4
C、a≥3D、a≥5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若方程(a2-a-2)x+(a2+a-6)y+a+1=0表示平行于x軸的直線,則a為(  )
A、-1或2B、-1
C、2D、不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=4x-a•2x+1+3,a∈R.
(1)若a=1,x∈[0,2],求f(x)的值域.
(2)f(x)=0有解,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案