設二次函數(shù)f(x)=ax2bxc,函數(shù)F(x)=f(x)-x的兩個零點為m,n(m<n).

(1)若m=-1,n=2,求不等式F(x)>0的解集;

(2)若a>0,且0<x<m<n<,比較f(x)與m的大小.


 (1)由題意知,F(x)=f(x)-xa(xm)(xn)(a≠0),

m=-1,n=2時,不等式F(x)>0,

a(x+1)(x-2)>0.

a>0時,不等式F(x)>0的解集為{x|x<-1或x>2};當a<0時,不等式F(x)>0的解集為{x|-1<x<2}.

(2)f(x)-mF(x)+xma(xm)(xn)+xm=(xm)(axan+1),

a>0,且0<x<m<n<,

xm<0,1-anax>0.

f(x)-m<0,即f(x)<m.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:


已知等比數(shù)列{an}的各項均為正數(shù),公比q≠1,設P(log0.5a5+log0.5a7),Q=log0.5,PQ的大小關系是(  )

A.PQ                                                       B.P<Q

C.PQ                                                       D.P>Q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


已知數(shù)列{an}、{bn}滿足a1,anbn=1,bn1,則b2014=(  )

A.  B.  C.  D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


給出下列四個命題:

①若a>b>0,則>;

②若a>b>0,則a>b;

③若a>b>0,則

④設ab是互不相等的正數(shù),則|ab|+≥2.

其中正確命題的序號是________(把你認為正確命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


已知函數(shù)yf(x)是定義在R上的增函數(shù),函數(shù)yf(x-1)的圖象關于點(1,0)對稱,若對任意的xy∈R,不等式f(x2-6x+21)+f(y2-8y)<0恒成立,則當x>3時,x2y2的取值范圍是(  )

A.(3,7)                                                        B.(9,25)

C.(13,49)                                                    D.(9,49)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


若規(guī)定=|adbc|,則不等式log<0的解集為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


已知x>0、y>0,xa、b、y成等差數(shù)列,x、cdy成等比數(shù)列,則的最小值是(  )

A.0    B.1    C.2    D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


使-x2+2xM成立的所有常數(shù)M中,我們把M的最小值1叫做-x2+2x的“上確界”,若a,b∈R,且ab=1,則-的“上確界”為(  )

A.  B.  C.-  D.-4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


與直線3x-4y+5=0關于x軸對稱的直線方程為(  )

A.3x+4y+5=0                                          B.3x+4y-5=0

C.-3x+4y-5=0                                       D.-3x+4y+5=0

查看答案和解析>>

同步練習冊答案