【題目】已知橢圓的離心率為,焦距為.斜率為的直線與橢圓有兩個不同的交點,

1)求橢圓的方程;

2)設(shè),直線與橢圓的另一個交點為,直線與橢圓的另一個交點為.若,和點共線,求

【答案】1;(2.

【解析】

1)根據(jù)離心率和焦距求得,由此求得,進(jìn)而求得橢圓的標(biāo)準(zhǔn)方程.

2)設(shè)出直線的方程,聯(lián)立直線的方程和橢圓方程,寫出根與系數(shù)關(guān)系,進(jìn)而求得點的坐標(biāo),同理求得點坐標(biāo).求得、,結(jié)合三點共線列方程,化簡求得的值.

1)由題意得,所以,

,所以,所以,

所以橢圓的標(biāo)準(zhǔn)方程為

2)設(shè),,,

①,②,

,所以可設(shè),

直線的方程為,

消去可得:

,

,即,

,代入①式可得,

所以,所以,

同理可得

,,

因為三點共線,

所以,

將點的坐標(biāo)代入化簡可得

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】冠狀病毒是一個大型病毒家族,可引起感冒以及中東呼吸綜合征(MERS)和嚴(yán)重急性呼吸綜合征(SARS)等較嚴(yán)重疾病.而今年出現(xiàn)在湖北武漢的新型冠狀病毒(nCoV)是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株.人感染了新型冠狀病毒后常見體征有呼吸道癥狀、發(fā)熱、咳嗽、氣促和呼吸困難等.在較嚴(yán)重病例中感染可導(dǎo)致肺炎、嚴(yán)重急性呼吸綜合征、腎衰竭,甚至死亡.某醫(yī)院為篩查冠狀病毒,需要檢驗血液是否為陽性,現(xiàn)有份血液樣本,有以下兩種檢驗方式:

方式一:逐份檢驗,則需要檢驗.

方式二:混合檢驗,將其中份血液樣本分別取樣混合在一起檢驗,若不是陽性,檢驗一次就夠了,如果檢驗結(jié)果為陽性,為了明確這份血液究竟哪幾份為陽性,就要對這份再逐份檢驗,此時這份血液的檢驗次數(shù)總共為.

假設(shè)在接受檢驗的血液樣本中,每份樣本的檢驗結(jié)果是陽性還是陰性都是獨立的,且每份樣本是陽性結(jié)果的概率為.現(xiàn)取其中份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數(shù)為,采用混合檢驗方式,樣本需要檢驗的總次數(shù)為.

1)若,試求關(guān)于的函數(shù)關(guān)系式;

2)若與干擾素計量相關(guān),其中是不同的正實數(shù),滿足都有成立.

(ⅰ)求證:數(shù)列為等比數(shù)列;

(ⅱ)當(dāng)時,采用混合檢驗方式可以使得樣本需要檢驗的總次數(shù)的期望值比逐份檢驗的總次數(shù)的期望值更少,求的最大值.

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)在其圖象上存在不同的兩點,其坐標(biāo)滿足條件:的最大值為0,則稱柯西函數(shù),則下列函數(shù):

;②;③;④.其中是柯西函數(shù)的為(

A.①②B.③④C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角AB,C的對邊分別為ab,c,

1)若還同時滿足下列四個條件中的三個:①,②,③,④的面積,請指出這三個條件,并說明理由;

2)若,求周長L的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市有兩家共享單車公司,在市場上分別投放了黃、藍(lán)兩種顏色的單車,已知黃、藍(lán)兩種顏色的單車的投放比例為2:1.監(jiān)管部門為了了解兩種顏色的單車的質(zhì)量,決定從市場中隨機抽取5輛單車進(jìn)行體驗,若每輛單車被抽取的可能性相同.

(1)求抽取的5輛單車中有2輛是藍(lán)色顏色單車的概率;

(2)在騎行體驗過程中,發(fā)現(xiàn)藍(lán)色單車存在一定質(zhì)量問題,監(jiān)管部門決定從市場中隨機地抽取一輛送技術(shù)部門作進(jìn)一步抽樣檢測,并規(guī)定若抽到的是藍(lán)色單車,則抽樣結(jié)束,若抽取的是黃色單車,則將其放回市場中,并繼續(xù)從市場中隨機地抽取下一輛單車,并規(guī)定抽樣的次數(shù)最多不超過)次.在抽樣結(jié)束時,已取到的黃色單車以表示,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次運動會上,某單位派出了由6名主力隊員和5名替補隊員組成的代表隊參加比賽.

1)如果隨機抽派5名隊員上場比賽,將主力隊員參加比賽的人數(shù)記為,求隨機變量的數(shù)學(xué)期望;

2)若主力隊員中有2名隊員在練習(xí)比賽中受輕傷,不宜同時上場;替補隊員中有2名隊員身材相對矮小,也不宜同時上場,那么為了場上參加比賽的5名隊員中至少有3名主力隊員,教練員有多少種組隊方案?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為常數(shù),函數(shù)的圖象在它們與坐標(biāo)軸交點處的切線互相平行.

1)求的值;

2)若存在,使不等式成立,求實數(shù)的取值范圍;

3)令,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)研究函數(shù)的極值點;

(2)當(dāng)時,若對任意的,恒有,求的取值范圍;

(3)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場為了了解顧客的購物信息,隨機在商場收集了位顧客購物的相關(guān)數(shù)據(jù)如下表:

一次購物款(單位:元)

顧客人數(shù)

統(tǒng)計結(jié)果顯示位顧客中購物款不低于元的顧客占,該商場每日大約有名顧客,為了增加商場銷售額度,對一次購物不低于元的顧客發(fā)放紀(jì)念品.

(Ⅰ)試確定, 的值,并估計每日應(yīng)準(zhǔn)備紀(jì)念品的數(shù)量;

(Ⅱ)為了迎接春節(jié),商場進(jìn)行讓利活動,一次購物款元及以上的一次返利元;一次購物不超過元的按購物款的百分比返利,具體見下表:

一次購物款(單位:元)

返利百分比

請問該商場日均大約讓利多少元?

查看答案和解析>>

同步練習(xí)冊答案