【題目】如圖,矩形CDEF和梯形ABCD互相垂直,,,

1)若中點,求證:∥平面;

2)求平面與平面所成銳二面角的大小.

【答案】1)證明見解析(2

【解析】

1)設(shè)交于點,連結(jié),在矩形,中點,求證,即可求得答案;

2)以為坐標(biāo)原點, 其中、分別為、軸建立空間直角坐標(biāo)系,

求出平面的法向量和平面的法向量,根據(jù),即可求得答案.

1)設(shè)交于點,連結(jié),在矩形,中點,

如圖:

中點,

平面,平面

∥平面

2平面平面,平面平面,

平面,,

平面,

為坐標(biāo)原點, 其中、分別為、軸建立空間直角坐標(biāo)系,

如圖:

設(shè),,,,,,

可得:,,,

,

,,

設(shè)平面的法向量,

可得得到的一個解為,

注意到平面的法向量,

,

平面所成銳二面角的大小為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點,右焦點是拋物線的焦點.

(1)求橢圓的方程;

(2)已知動直線過右焦點,且與橢圓分別交于,兩點.試問軸上是否存在定點,使得恒成立?若存在求出點的坐標(biāo):若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱柱中,,平面,.

(1)證明:.

(2)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)當(dāng)時,求曲線處的切線方程;

(Ⅱ)求的單調(diào)區(qū)間;

(Ⅲ)設(shè),若對于任意,總存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計劃購買1臺機器,該種機器使用三年后即被淘汰.在購進機器時,可以一次性額外購買幾次維修服務(wù),每次維修服務(wù)費用200元,另外實際維修一次還需向維修人員支付小費,小費每次50元.在機器使用期間,如果維修次數(shù)超過購機時購買的維修服務(wù)次數(shù),則每維修一次需支付維修服務(wù)費用500元,無需支付小費.現(xiàn)需決策在購買機器時應(yīng)同時一次性購買幾次維修服務(wù),為此搜集并整理了100臺這種機器在三年使用期內(nèi)的維修次數(shù),得下面統(tǒng)計表:

維修次數(shù)

8

9

10

11

12

頻數(shù)

10

20

30

30

10

x表示1臺機器在三年使用期內(nèi)的維修次數(shù),y表示1臺機器在維修上所需的費用(單位:元),表示購機的同時購買的維修服務(wù)次數(shù).

(1)若=10,求yx的函數(shù)解析式;

(2)若要求“維修次數(shù)不大于的頻率不小于0.8,求n的最小值;

(3)假設(shè)這100臺機器在購機的同時每臺都購買10次維修服務(wù),或每臺都購買11次維修服務(wù),分別計算這100臺機器在維修上所需費用的平均數(shù),以此作為決策依據(jù),購買1臺機器的同時應(yīng)購買10次還是11次維修服務(wù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:在四棱錐中,,的中點,是等邊三角形,平面平面.

(Ⅰ)求證:平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】地球海洋面積遠遠大于陸地面積,隨著社會的發(fā)展,科技的進步,人類發(fā)現(xiàn)海洋不僅擁有巨大的經(jīng)濟利益,還擁有著深遠的政治利益.聯(lián)合國于第63屆聯(lián)合國大會上將每年的68日確定為“世界海洋日”.201968日,某大學(xué)的行政主管部門從該大學(xué)隨機抽取100名大學(xué)生進行一次海洋知識測試,并按測試成績(單位:分)分組如下:第一組[65,70),第二組[70,75),第二組[75,80),第四組[8085),第五組[85,90],得到頻率分布直方圖如下圖:

1)求實數(shù)的值;

2)若從第四組、第五組的學(xué)生中按組用分層抽樣的方法抽取6名學(xué)生組成中國海洋實地考察小隊,出發(fā)前,用簡單隨機抽樣方法從6人中抽取2人作為正、副隊長,列舉出所有的基本事件并求“抽取的2人為不同組”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦點與雙曲線的焦點重合,并且經(jīng)過點.

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

(II) 設(shè)橢圓C短軸的上頂點為P,直線不經(jīng)過P點且與相交于、兩點,若直線PA與直線PB的斜率的和為,判斷直線是否過定點,若是,求出這個定點,否則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點,焦點在軸,離心率為,短軸長為2.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè),過橢圓左焦點的直線,兩點,若對滿足條件的任意直線,不等式恒成立,求的最小值.

查看答案和解析>>

同步練習(xí)冊答案