【題目】已知數(shù)列,其前項和為.

(1)若對任意的, , , 組成公差為4的等差數(shù)列,且,求;

(2)若數(shù)列是公比為)的等比數(shù)列, 為常數(shù),

求證:數(shù)列為等比數(shù)列的充要條件為.

【答案】(1);(2)證明見解析.

【解析】試題分析:(1)根據(jù)題意,可求得, ),從而得 , ,……, , 是公差為4的等差數(shù)列,且,于是可求

(2)由 ,可求得,,兩式相減得,若,可證得數(shù)列為等比數(shù)列,(充分性);若數(shù)列為等比數(shù)列,可證得,(必要性).

試題解析:(1)因為, , 成公差為4的等差數(shù)列,

所以, ),

所以, ,……, , 是公差為4的等差數(shù)列,且

又因為,所以

(2)因為,所以,①

所以,②

②-①,得,③

(i)充分性:因為,所以, ,代入③式,得

,因為,又,

所以 ,所以為等比數(shù)列,

(ii)必要性:設的公比為,則由③得,

整理得,

此式為關于的恒等式,若,則左邊=0,右邊=-1,矛盾:

,當且僅當時成立,所以.

由(i)、(ii)可知,數(shù)列為等比數(shù)列的充要條件.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】經(jīng)銷商經(jīng)銷某種農產品,在一個銷售季度內,每售出該產品獲利潤500元,未售出的產品,每虧損300元.根據(jù)歷史資料,得到銷售季度內市場需求量的頻率分布直方圖,如圖所示.經(jīng)銷商為下一個銷售季度購進了該農產品.以 (單位: )表示下一個銷售季度內的市場需求量, (單位:元)表示下一個銷售季度內經(jīng)銷該農產品的利潤.

(1)將表示為的函數(shù);

(2)根據(jù)直方圖估計利潤不少于57000元的概率;

(3)在直方圖的需求量分組中,以各組的區(qū)間中點值代表該組的各個值,并以需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中點值的概率(例如:若需求量,則取,且的概率等于需求量落入的頻率),求的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線L經(jīng)過點P(﹣4,﹣3),且被圓(x+1)2+(y+2)2=25截得的弦長為8,則直線L的方程是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(其中 為常數(shù), 為自然對數(shù)的底數(shù)).

(1)討論函數(shù)的單調性;

(2)設曲線處的切線為,當時,求直線軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“微信運動”已成為當下熱門的運動方式,小王的微信朋友圈內也有大量好友參與了“微信運動”,他隨機選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

步數(shù)

性別

0-2000

2001-5000

5001-8000

8001-10000

>10000

1

2

3

6

8

0

2

10

6

2

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

附:

(1)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評定為“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認為“評定類型”與“性別”有關?

積極型

懈怠型

總計

總計

(2)若小王以這40位好友該日走路步數(shù)的頻率分布來估計其所有微信好友每日走路步數(shù)的概率分布,現(xiàn)從小王的所有微信好友中任選2人,其中每日走路不超過5000步的有人,超過10000步的有人,設,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,若對任意的a∈(﹣3,+∞),關于x的方程f(x)=kx都有3個不同的根,則k等于(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列,其前項和為.

(1)若對任意的, , , 組成公差為4的等差數(shù)列,且,求

(2)若數(shù)列是公比為)的等比數(shù)列, 為常數(shù),

求證:數(shù)列為等比數(shù)列的充要條件為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙等五名奧運志愿者被隨機地分到A,B,C,D四個不同的崗位服務,每個崗位至少有一名志愿者.
(1)求甲、乙兩人同時參加A崗位服務的概率;
(2)求甲、乙兩人不在同一個崗位服務的概率;
(3)設隨機變量ξ為這五名志愿者中參加A崗位服務的人數(shù),求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了了解小學生的體能情況,抽取了某校一個年級的部分學生進行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),已知圖中從左到右前三個小組的頻率分別為 0.1,0.3,0.4,第一小組的頻數(shù)為 5.

(1)求第四小組的頻率;
(2)若次數(shù)在 75 次以上(含75 次)為達標,試估計該年級學生跳繩測試的達標率.
(3)在這次測試中,一分鐘跳繩次數(shù)的中位數(shù)落在哪個小組內?試求出中位數(shù).

查看答案和解析>>

同步練習冊答案