【題目】“微信運動”已成為當下熱門的運動方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運動”,他隨機選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

步數(shù)

性別

0-2000

2001-5000

5001-8000

8001-10000

>10000

1

2

3

6

8

0

2

10

6

2

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

附:

(1)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評定為“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認為“評定類型”與“性別”有關(guān)?

積極型

懈怠型

總計

總計

(2)若小王以這40位好友該日走路步數(shù)的頻率分布來估計其所有微信好友每日走路步數(shù)的概率分布,現(xiàn)從小王的所有微信好友中任選2人,其中每日走路不超過5000步的有人,超過10000步的有人,設(shè),求的分布列及數(shù)學期望.

【答案】1列聯(lián)表見解析,沒有95%以上的把握認為二者有關(guān)(2分布列見解析,

【解析】試題分析:(1根據(jù)根據(jù)表格中數(shù)據(jù)可完成列聯(lián)表,根據(jù)公式求出,由此可得沒有以上的把握認為“評定類型”與“性別”有關(guān);(2的所有可能取值為分別求出各隨機變量的概率,從而可得的分布列,根據(jù)期望公式可得數(shù)學期望.

試題解析:(1

積極型

懈怠型

總計

14

6

20

8

12

20

總計

22

18

40

故沒有95%以上的吧我認為二者有關(guān)

2)由題知,小王的微信好友中任選一人,其每日走路步數(shù)不超過5000步的概率為,超過10000步的概率為,且當時,

時, ;

時, ;

的分布列為

0

1

2

可得期望

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)
(1)若 ,求 的單調(diào)區(qū)間;
(2)若 時, 恒成立,求 的范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)函數(shù),若的極值點,求的值并討論的單調(diào)性;

(2)函數(shù)有兩個不同的極值點,其極小值為為,試比較的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,已知 ,若∠A、∠B、∠C的對邊分別為a、b、c,且b+c=4,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,其導函數(shù)為.

(1)設(shè),若函數(shù)上有且只有一個零點,求的取值范圍;

(2)設(shè),且,點是曲線上的一個定點,是否存在實數(shù),使得成立?證明你的結(jié)論

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列,其前項和為.

(1)若對任意的, , 組成公差為4的等差數(shù)列,且,求

(2)若數(shù)列是公比為)的等比數(shù)列, 為常數(shù),

求證:數(shù)列為等比數(shù)列的充要條件為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直三棱柱中, , , , .

1)若,求直線與平面所成角的正弦值;

2)若二面角的大小為,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x|2x﹣a|,g(x)= (a∈R),若0<a<12,且對任意t∈[3,5],方程f(x)=g(t)在x∈[3,5]總存在兩不相等的實數(shù)根,求a的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點.

(1)證明:PA∥平面BDE;
(2)求二面角B﹣DE﹣C的平面角的余弦值;
(3)在棱PB上是否存在點F,使PB⊥平面DEF?證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案