由動點P向圓x2+y2=1引兩條切線PA,PB,切點分別為A,B,∠APB=60°,則P(x,y)中x,y滿足的關(guān)系為
 
考點:圓的切線方程
專題:計算題,直線與圓
分析:由∠APO(O為圓心)=
1
2
∠APB=30°,知PO=2OA=2.所以P的軌跡是一個以原點為圓心,半徑為2的圓,由此可知點P的軌跡方程.
解答: 解:∵∠APO(O為圓心)=
1
2
∠APB=30°,
∴PO=2OA=2.
∴P的軌跡是一個以原點為圓心,半徑為2的圓,
軌跡方程為x2+y2=4.
故答案為:x2+y2=4.
點評:本題考查軌跡方程的求法,解題時注意分析題條件,尋找數(shù)量間的相互關(guān)系,合理建立方程.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,已知正方體ABCD-A1B1C1D1的棱長為1,M、N分別是對角線AD1、BD上的點,且AM=BN=x.
(1)證明:直線MN∥平面B1D1C.
(2)MN⊥AD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一只口袋中有形狀大小都相同的小球,其中白球1個,紅球2個,黃球1個,現(xiàn)從中隨機摸出2個小球,試求:
(1)兩個都是紅球的概率;
(2)至少一個是紅球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是一次函數(shù),且滿足3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知二次函數(shù)f(x)滿足條件f(0)=1及f(x+1)-f(x)=2x,求f(x);
(2)若f(x)滿足關(guān)系式f(x)+2f(
1
x
)=3x,求f(x)的解析式;
(3)f(x+1)=x2+4x+1,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=log3x,x∈[1,9],求函數(shù)y=f(x2)+f2(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若實數(shù)x,y滿足x+2y=2,則2x+4y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=
mx2+4
3x+n
是奇函數(shù),且f(1)=
5
3
,
(1)求實數(shù)m,n的值;
(2)判斷并證明函數(shù)f(x)在[2,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

二次函數(shù)y=x2-x+3的自變量的值組成的集合是
 

查看答案和解析>>

同步練習冊答案