分析 利用兩角差的余弦函數(shù)公式化簡已知等式,進而兩邊平方利用二倍角的正弦函數(shù)公式,同角三角函數(shù)基本關(guān)系式即可求解.
解答 解:∵$cos(\frac{π}{4}-α)=k$,
∴$\frac{\sqrt{2}}{2}$(cosα+sinα)=k,可得:cosα+sinα=$\sqrt{2}$k,
∴兩邊平方可得:cos2α+sin2α+2cosαsinα=2k2,可得:1+sin2α=2k2,
∴sin2α=2k2-1.
故答案為:sin2α=2k2-1.
點評 本題主要考查了兩角差的余弦函數(shù)公式,二倍角的正弦函數(shù)公式,同角三角函數(shù)基本關(guān)系式在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0個 | B. | 1個 | C. | 2個 | D. | 3個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{10}{49}$ | B. | $\frac{49}{10}$ | C. | $\frac{7}{10}$ | D. | $\frac{10}{7}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | |x|≥1 | B. | |x+y|≥1 | C. | y≤-2 | D. | $|x|≥\frac{1}{2}$且$|y|≥\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 經(jīng)過平面外一點有且只有一條直線與已知平面垂直 | |
B. | 經(jīng)過平面外一點有且只有一條直線與已知平面平行 | |
C. | 經(jīng)過平面外一點有且只有一條直線與已知直線垂直 | |
D. | 經(jīng)過平面外一點有且只有一平面與已知平面垂直 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com