分析 由已知向量的坐標(biāo)求出向量$\overrightarrow{a}$+λ$\overrightarrow$的坐標(biāo),結(jié)合向量垂直的坐標(biāo)運算得答案.
解答 解:∵$\overrightarrow{a}$=(3,2),$\overrightarrow$=(-1,2),∴$\overrightarrow{a}$+λ$\overrightarrow$=(3-λ,2+2λ),
又($\overrightarrow{a}$+λ$\overrightarrow$)⊥$\overrightarrow$,
∴-1×(3-λ)+2×(2+2λ)=0,解得:$λ=-\frac{1}{5}$.
故答案為:-$\frac{1}{5}$.
點評 本題考查平面向量的數(shù)量積運算,考查了向量垂直的坐標(biāo)表示,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,-$\frac{3}{2}$] | B. | (0,-$\frac{3}{2}$) | C. | (-∞,-$\frac{3}{2}$) | D. | (-∞,-$\frac{3}{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4$\sqrt{19}$-4 | B. | $\frac{27}{2}$ | C. | $\frac{121}{9}$ | D. | $\frac{67}{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com